Real closed exponential fields
Fundamenta Mathematicae, Tome 219 (2012) no. 2, pp. 163-190
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Ressayre considered real closed exponential fields and “exponential” integer parts, i.e., integer parts that respect the exponential function. In 1993, he outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre's construction and then analyze the complexity. Ressayre's construction is canonical once we fix the real closed exponential field $R$, a residue field section $k$, and a well ordering $\prec $ on $R$. The construction is clearly constructible over these objects. Each step looks effective, but there may be many steps. We produce an example of an exponential field $R$ with a residue field section $k$ and a well ordering $\prec $ on $R$ such that $D^c(R)$ is low and $k$ and $\prec $ are $\Delta ^0_3$, and Ressayre's construction cannot be completed in $L_{\omega _1^{\rm CK}}$.
Keywords:
ressayre considered real closed exponential fields exponential integer parts integer parts respect exponential function outlined proof every real closed exponential field has exponential integer part present paper detailed account ressayres construction analyze complexity ressayres construction canonical once fix real closed exponential field residue field section nbsp ordering prec construction clearly constructible these objects each step looks effective there may many steps produce example exponential field residue field section ordering prec low and prec delta ressayres construction cannot completed omega
Affiliations des auteurs :
Paola D'Aquino 1 ; Julia F. Knight 2 ; Salma Kuhlmann 3 ; Karen Lange 4
@article{10_4064_fm219_2_6,
author = {Paola D'Aquino and Julia F. Knight and Salma Kuhlmann and Karen Lange},
title = {Real closed exponential fields},
journal = {Fundamenta Mathematicae},
pages = {163--190},
publisher = {mathdoc},
volume = {219},
number = {2},
year = {2012},
doi = {10.4064/fm219-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm219-2-6/}
}
TY - JOUR AU - Paola D'Aquino AU - Julia F. Knight AU - Salma Kuhlmann AU - Karen Lange TI - Real closed exponential fields JO - Fundamenta Mathematicae PY - 2012 SP - 163 EP - 190 VL - 219 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm219-2-6/ DO - 10.4064/fm219-2-6 LA - en ID - 10_4064_fm219_2_6 ER -
Paola D'Aquino; Julia F. Knight; Salma Kuhlmann; Karen Lange. Real closed exponential fields. Fundamenta Mathematicae, Tome 219 (2012) no. 2, pp. 163-190. doi: 10.4064/fm219-2-6
Cité par Sources :