Real closed exponential fields
Fundamenta Mathematicae, Tome 219 (2012) no. 2, pp. 163-190.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Ressayre considered real closed exponential fields and “exponential” integer parts, i.e., integer parts that respect the exponential function. In 1993, he outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre's construction and then analyze the complexity. Ressayre's construction is canonical once we fix the real closed exponential field $R$, a residue field section $k$, and a well ordering $\prec $ on $R$. The construction is clearly constructible over these objects. Each step looks effective, but there may be many steps. We produce an example of an exponential field $R$ with a residue field section $k$ and a well ordering $\prec $ on $R$ such that $D^c(R)$ is low and $k$ and $\prec $ are $\Delta ^0_3$, and Ressayre's construction cannot be completed in $L_{\omega _1^{\rm CK}}$.
DOI : 10.4064/fm219-2-6
Keywords: ressayre considered real closed exponential fields exponential integer parts integer parts respect exponential function outlined proof every real closed exponential field has exponential integer part present paper detailed account ressayres construction analyze complexity ressayres construction canonical once fix real closed exponential field residue field section nbsp ordering prec construction clearly constructible these objects each step looks effective there may many steps produce example exponential field residue field section ordering prec low and prec delta ressayres construction cannot completed omega

Paola D'Aquino 1 ; Julia F. Knight 2 ; Salma Kuhlmann 3 ; Karen Lange 4

1 Dipartimento di Matematica Seconda Università degli Studi di Napoli Viale Lincoln, 5 81100 Caserta, Italia
2 Department of Mathematics University of Notre Dame 255 Hurley Hall Notre Dame, IN 46556, U.S.A.
3 Fachbereich Mathematik und Statistik Universität Konstanz Universitätsstraße 10 78457 Konstanz, Germany
4 Department of Mathematics Wellesley College 106 Central Street Wellesley, MA 02481, U.S.A.
@article{10_4064_fm219_2_6,
     author = {Paola D'Aquino and Julia F. Knight and Salma Kuhlmann and Karen Lange},
     title = {Real closed exponential fields},
     journal = {Fundamenta Mathematicae},
     pages = {163--190},
     publisher = {mathdoc},
     volume = {219},
     number = {2},
     year = {2012},
     doi = {10.4064/fm219-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm219-2-6/}
}
TY  - JOUR
AU  - Paola D'Aquino
AU  - Julia F. Knight
AU  - Salma Kuhlmann
AU  - Karen Lange
TI  - Real closed exponential fields
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 163
EP  - 190
VL  - 219
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm219-2-6/
DO  - 10.4064/fm219-2-6
LA  - en
ID  - 10_4064_fm219_2_6
ER  - 
%0 Journal Article
%A Paola D'Aquino
%A Julia F. Knight
%A Salma Kuhlmann
%A Karen Lange
%T Real closed exponential fields
%J Fundamenta Mathematicae
%D 2012
%P 163-190
%V 219
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm219-2-6/
%R 10.4064/fm219-2-6
%G en
%F 10_4064_fm219_2_6
Paola D'Aquino; Julia F. Knight; Salma Kuhlmann; Karen Lange. Real closed exponential fields. Fundamenta Mathematicae, Tome 219 (2012) no. 2, pp. 163-190. doi : 10.4064/fm219-2-6. http://geodesic.mathdoc.fr/articles/10.4064/fm219-2-6/

Cité par Sources :