Turning Borel sets into clopen sets effectively
Fundamenta Mathematicae, Tome 219 (2012) no. 2, pp. 119-143.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present the effective version of the theorem about turning Borel sets in Polish spaces into clopen sets while preserving the Borel structure of the underlying space. We show that under some conditions the emerging parameters can be chosen in a hyperarithmetical way and using this we obtain some uniformity results.
DOI : 10.4064/fm219-2-4
Keywords: present effective version theorem about turning borel sets polish spaces clopen sets while preserving borel structure underlying space under conditions emerging parameters chosen hyperarithmetical using obtain uniformity results

Vassilios Gregoriades 1

1 Arbeitsgruppe Logik Fachbereich Mathematik Technische Universität Darmstadt Schloßgartenstraße 7 64289 Darmstadt, Germany
@article{10_4064_fm219_2_4,
     author = {Vassilios Gregoriades},
     title = {Turning {Borel} sets into clopen sets effectively},
     journal = {Fundamenta Mathematicae},
     pages = {119--143},
     publisher = {mathdoc},
     volume = {219},
     number = {2},
     year = {2012},
     doi = {10.4064/fm219-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm219-2-4/}
}
TY  - JOUR
AU  - Vassilios Gregoriades
TI  - Turning Borel sets into clopen sets effectively
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 119
EP  - 143
VL  - 219
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm219-2-4/
DO  - 10.4064/fm219-2-4
LA  - en
ID  - 10_4064_fm219_2_4
ER  - 
%0 Journal Article
%A Vassilios Gregoriades
%T Turning Borel sets into clopen sets effectively
%J Fundamenta Mathematicae
%D 2012
%P 119-143
%V 219
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm219-2-4/
%R 10.4064/fm219-2-4
%G en
%F 10_4064_fm219_2_4
Vassilios Gregoriades. Turning Borel sets into clopen sets effectively. Fundamenta Mathematicae, Tome 219 (2012) no. 2, pp. 119-143. doi : 10.4064/fm219-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm219-2-4/

Cité par Sources :