A simultaneous selection theorem
Fundamenta Mathematicae, Tome 219 (2012) no. 1, pp. 1-14
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a theorem that generalizes in a way both
Michael's Selection Theorem and Dugundji's Simultaneous Extension
Theorem. We use it to prove that if $K$ is an uncountable compact
metric space and $X$ a Banach space, then $C(K, X)$ is isomorphic
to $C(\mathcal{C}, X)$ where $\mathcal{C}$ denotes the Cantor set. For
$X=\mathbb{R}$, this gives the well known Milyutin Theorem.
Keywords:
prove theorem generalizes michaels selection theorem dugundjis simultaneous extension theorem prove uncountable compact metric space banach space isomorphic mathcal where mathcal denotes cantor set mathbb gives known milyutin theorem
Affiliations des auteurs :
Alexander D. Arvanitakis 1
@article{10_4064_fm219_1_1,
author = {Alexander D. Arvanitakis},
title = {A simultaneous selection theorem},
journal = {Fundamenta Mathematicae},
pages = {1--14},
publisher = {mathdoc},
volume = {219},
number = {1},
year = {2012},
doi = {10.4064/fm219-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm219-1-1/}
}
Alexander D. Arvanitakis. A simultaneous selection theorem. Fundamenta Mathematicae, Tome 219 (2012) no. 1, pp. 1-14. doi: 10.4064/fm219-1-1
Cité par Sources :