A simultaneous selection theorem
Fundamenta Mathematicae, Tome 219 (2012) no. 1, pp. 1-14.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a theorem that generalizes in a way both Michael's Selection Theorem and Dugundji's Simultaneous Extension Theorem. We use it to prove that if $K$ is an uncountable compact metric space and $X$ a Banach space, then $C(K, X)$ is isomorphic to $C(\mathcal{C}, X)$ where $\mathcal{C}$ denotes the Cantor set. For $X=\mathbb{R}$, this gives the well known Milyutin Theorem.
DOI : 10.4064/fm219-1-1
Keywords: prove theorem generalizes michaels selection theorem dugundjis simultaneous extension theorem prove uncountable compact metric space banach space isomorphic mathcal where mathcal denotes cantor set mathbb gives known milyutin theorem

Alexander D. Arvanitakis 1

1 Department of Mathematics National Technical University of Athens 15780 Athens, Greece
@article{10_4064_fm219_1_1,
     author = {Alexander D. Arvanitakis},
     title = {A simultaneous selection theorem},
     journal = {Fundamenta Mathematicae},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {219},
     number = {1},
     year = {2012},
     doi = {10.4064/fm219-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm219-1-1/}
}
TY  - JOUR
AU  - Alexander D. Arvanitakis
TI  - A simultaneous selection theorem
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 1
EP  - 14
VL  - 219
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm219-1-1/
DO  - 10.4064/fm219-1-1
LA  - en
ID  - 10_4064_fm219_1_1
ER  - 
%0 Journal Article
%A Alexander D. Arvanitakis
%T A simultaneous selection theorem
%J Fundamenta Mathematicae
%D 2012
%P 1-14
%V 219
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm219-1-1/
%R 10.4064/fm219-1-1
%G en
%F 10_4064_fm219_1_1
Alexander D. Arvanitakis. A simultaneous selection theorem. Fundamenta Mathematicae, Tome 219 (2012) no. 1, pp. 1-14. doi : 10.4064/fm219-1-1. http://geodesic.mathdoc.fr/articles/10.4064/fm219-1-1/

Cité par Sources :