Monoidal semifilters and arrays of prime ideals
Fundamenta Mathematicae, Tome 237 (2017) no. 3, pp. 281-296.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $R$ be a commutative ring. If $A\subseteq R$ is an ideal and $\mathcal F$ is a monoidal semifilter of ideals in $R$, we say that a prime ideal $P$ is a realization of $(A,\mathcal F)$ if $P\supseteq A$ and $P\notin \mathcal F$. We give “if and only if” conditions for the existence of a realization of a family $\{(A_t,\mathcal F_t)\}_{t\in T}$ of such pairs indexed by a finite rooted tree $T$. We also apply our results to trees of prime ideals outside a given monoidal semifilter in a tensor product of algebras.
DOI : 10.4064/fm218-8-2016
Keywords: commutative ring subseteq ideal mathcal monoidal semifilter ideals say prime ideal realization mathcal supseteq notin mathcal only conditions existence realization family mathcal pairs indexed finite rooted tree apply results trees prime ideals outside given monoidal semifilter tensor product algebras

Abhishek Banerjee 1

1 Department of Mathematics Indian Institute of Science Bangalore 560012, India
@article{10_4064_fm218_8_2016,
     author = {Abhishek Banerjee},
     title = {Monoidal semifilters and arrays of prime ideals},
     journal = {Fundamenta Mathematicae},
     pages = {281--296},
     publisher = {mathdoc},
     volume = {237},
     number = {3},
     year = {2017},
     doi = {10.4064/fm218-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm218-8-2016/}
}
TY  - JOUR
AU  - Abhishek Banerjee
TI  - Monoidal semifilters and arrays of prime ideals
JO  - Fundamenta Mathematicae
PY  - 2017
SP  - 281
EP  - 296
VL  - 237
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm218-8-2016/
DO  - 10.4064/fm218-8-2016
LA  - en
ID  - 10_4064_fm218_8_2016
ER  - 
%0 Journal Article
%A Abhishek Banerjee
%T Monoidal semifilters and arrays of prime ideals
%J Fundamenta Mathematicae
%D 2017
%P 281-296
%V 237
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm218-8-2016/
%R 10.4064/fm218-8-2016
%G en
%F 10_4064_fm218_8_2016
Abhishek Banerjee. Monoidal semifilters and arrays of prime ideals. Fundamenta Mathematicae, Tome 237 (2017) no. 3, pp. 281-296. doi : 10.4064/fm218-8-2016. http://geodesic.mathdoc.fr/articles/10.4064/fm218-8-2016/

Cité par Sources :