Cellular covers of cotorsion-free modules
Fundamenta Mathematicae, Tome 217 (2012) no. 3, pp. 211-231.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In this paper we improve recent results dealing with cellular covers of $R$-modules. Cellular covers (sometimes called colocalizations) come up in the context of homotopical localization of topological spaces. They are related to idempotent cotriples, idempotent comonads or coreflectors in category theory.Recall that a homomorphism of $R$-modules $\pi: G\to H$ is called a cellular cover over $H$ if $\pi$ induces an isomorphism $\def\Hom{\mathop{\rm Hom}\nolimits}\pi_*: \Hom_R(G,G)\cong \Hom_R(G,H),$ where $\pi_*(\varphi)= \pi \varphi$ for each $\def\Hom{\mathop{\rm Hom}\nolimits}\varphi \in \Hom_R(G,G)$ (where maps are acting on the left). On the one hand, we show that every cotorsion-free $R$-module of rank $\def\aln{{\aleph_0}}\def\Cont{2^{\aln}}\kappa\Cont$ is realizable as the kernel of some cellular cover $G\to H$ where the rank of $G$ is $3\kappa +1$ (or 3, if $\kappa=1$). The proof is based on Corner's classical idea of how to construct torsion-free abelian groups with prescribed countable endomorphism rings. This complements results by Buckner–Dugas. On the other hand, we prove that every cotorsion-free $R$-module $H$ that satisfies some rigid conditions admits arbitrarily large cellular covers $G\to H$. This improves results by Fuchs–Göbel and Farjoun–Göbel–Segev–Shelah.
DOI : 10.4064/fm217-3-2
Keywords: paper improve recent results dealing cellular covers r modules cellular covers sometimes called colocalizations come context homotopical localization topological spaces related idempotent cotriples idempotent comonads coreflectors category theory recall homomorphism r modules called cellular cover nbsp induces isomorphism def hom mathop hom nolimits * hom cong hom where * varphi varphi each def hom mathop hom nolimits varphi hom where maps acting every cotorsion free r module rank def aln aleph def cont aln kappa cont realizable kernel cellular cover where rank kappa kappa proof based corners classical idea construct torsion free abelian groups prescribed countable endomorphism rings complements results buckner dugas other prove every cotorsion free r module satisfies rigid conditions admits arbitrarily large cellular covers improves results fuchs bel farjoun bel segev shelah

Rüdiger Göbel 1 ; José L. Rodríguez 2 ; Lutz Strüngmann 1

1 Department of Mathematics University of Duisburg-Essen Campus Essen, 45117 Essen, Germany
2 Área de Geometría y Topología Facultad de Ciencias Experimentales University of Almería La cañada de San Urbano 04120 Almería, Spain
@article{10_4064_fm217_3_2,
     author = {R\"udiger G\"obel and Jos\'e L. Rodr{\'\i}guez and Lutz Str\"ungmann},
     title = {Cellular covers of cotorsion-free modules},
     journal = {Fundamenta Mathematicae},
     pages = {211--231},
     publisher = {mathdoc},
     volume = {217},
     number = {3},
     year = {2012},
     doi = {10.4064/fm217-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm217-3-2/}
}
TY  - JOUR
AU  - Rüdiger Göbel
AU  - José L. Rodríguez
AU  - Lutz Strüngmann
TI  - Cellular covers of cotorsion-free modules
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 211
EP  - 231
VL  - 217
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm217-3-2/
DO  - 10.4064/fm217-3-2
LA  - en
ID  - 10_4064_fm217_3_2
ER  - 
%0 Journal Article
%A Rüdiger Göbel
%A José L. Rodríguez
%A Lutz Strüngmann
%T Cellular covers of cotorsion-free modules
%J Fundamenta Mathematicae
%D 2012
%P 211-231
%V 217
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm217-3-2/
%R 10.4064/fm217-3-2
%G en
%F 10_4064_fm217_3_2
Rüdiger Göbel; José L. Rodríguez; Lutz Strüngmann. Cellular covers of cotorsion-free modules. Fundamenta Mathematicae, Tome 217 (2012) no. 3, pp. 211-231. doi : 10.4064/fm217-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm217-3-2/

Cité par Sources :