Cellular covers of cotorsion-free modules
Fundamenta Mathematicae, Tome 217 (2012) no. 3, pp. 211-231
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In this paper we improve recent results dealing with cellular
covers of $R$-modules. Cellular covers (sometimes called colocalizations)
come up in the context of homotopical localization of topological
spaces. They are related to idempotent cotriples, idempotent comonads or
coreflectors in category theory.Recall that a homomorphism of $R$-modules $\pi: G\to H$ is called
a cellular cover over $H$ if $\pi$ induces an isomorphism
$\def\Hom{\mathop{\rm Hom}\nolimits}\pi_*: \Hom_R(G,G)\cong \Hom_R(G,H),$ where $\pi_*(\varphi)=
\pi \varphi$ for each $\def\Hom{\mathop{\rm Hom}\nolimits}\varphi \in \Hom_R(G,G)$ (where maps are
acting on the left). On the one hand, we show that every
cotorsion-free $R$-module of rank $\def\aln{{\aleph_0}}\def\Cont{2^{\aln}}\kappa\Cont$ is realizable as
the kernel of some cellular cover $G\to H$ where the rank of $G$ is $3\kappa +1$ (or 3, if
$\kappa=1$). The proof is based on Corner's classical idea of how
to construct torsion-free abelian groups with prescribed countable
endomorphism rings. This complements results by Buckner–Dugas. On the other hand, we prove that every cotorsion-free
$R$-module $H$ that satisfies some rigid conditions admits arbitrarily large
cellular covers $G\to H$. This improves results by Fuchs–Göbel and
Farjoun–Göbel–Segev–Shelah.
Keywords:
paper improve recent results dealing cellular covers r modules cellular covers sometimes called colocalizations come context homotopical localization topological spaces related idempotent cotriples idempotent comonads coreflectors category theory recall homomorphism r modules called cellular cover nbsp induces isomorphism def hom mathop hom nolimits * hom cong hom where * varphi varphi each def hom mathop hom nolimits varphi hom where maps acting every cotorsion free r module rank def aln aleph def cont aln kappa cont realizable kernel cellular cover where rank kappa kappa proof based corners classical idea construct torsion free abelian groups prescribed countable endomorphism rings complements results buckner dugas other prove every cotorsion free r module satisfies rigid conditions admits arbitrarily large cellular covers improves results fuchs bel farjoun bel segev shelah
Affiliations des auteurs :
Rüdiger Göbel 1 ; José L. Rodríguez 2 ; Lutz Strüngmann 1
@article{10_4064_fm217_3_2,
author = {R\"udiger G\"obel and Jos\'e L. Rodr{\'\i}guez and Lutz Str\"ungmann},
title = {Cellular covers of cotorsion-free modules},
journal = {Fundamenta Mathematicae},
pages = {211--231},
publisher = {mathdoc},
volume = {217},
number = {3},
year = {2012},
doi = {10.4064/fm217-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm217-3-2/}
}
TY - JOUR AU - Rüdiger Göbel AU - José L. Rodríguez AU - Lutz Strüngmann TI - Cellular covers of cotorsion-free modules JO - Fundamenta Mathematicae PY - 2012 SP - 211 EP - 231 VL - 217 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm217-3-2/ DO - 10.4064/fm217-3-2 LA - en ID - 10_4064_fm217_3_2 ER -
Rüdiger Göbel; José L. Rodríguez; Lutz Strüngmann. Cellular covers of cotorsion-free modules. Fundamenta Mathematicae, Tome 217 (2012) no. 3, pp. 211-231. doi: 10.4064/fm217-3-2
Cité par Sources :