Finite-dimensional spaces in resolving classes
Fundamenta Mathematicae, Tome 217 (2012) no. 2, pp. 171-187.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Using the theory of resolving classes, we show that if $X$ is a CW complex of finite type such that ${\rm map}_*(X, S^{2n+1})\sim *$ for all sufficiently large $n$, then ${\rm map}_*(X, K) \sim *$ for every simply-connected finite-dimensional CW complex $K$; and under mild hypotheses on $\pi_1(X)$, the same conclusion holds for all finite-dimensional complexes $K$. Since it is comparatively easy to prove the former condition for $X = B\mathbb Z/p$ (we give a proof in an appendix), this result can be applied to give a new, more elementary proof of the Sullivan conjecture.
DOI : 10.4064/fm217-2-3
Keywords: using theory resolving classes complex finite type map * sim * sufficiently large map * sim * every simply connected finite dimensional complex under mild hypotheses conclusion holds finite dimensional complexes since comparatively easy prove former condition mathbb proof appendix result applied elementary proof sullivan conjecture

Jeffrey Strom 1

1 Department of Mathematics Western Michigan University Kalamazoo, MI 49008-5200, U.S.A.
@article{10_4064_fm217_2_3,
     author = {Jeffrey Strom},
     title = {Finite-dimensional spaces in resolving classes},
     journal = {Fundamenta Mathematicae},
     pages = {171--187},
     publisher = {mathdoc},
     volume = {217},
     number = {2},
     year = {2012},
     doi = {10.4064/fm217-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm217-2-3/}
}
TY  - JOUR
AU  - Jeffrey Strom
TI  - Finite-dimensional spaces in resolving classes
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 171
EP  - 187
VL  - 217
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm217-2-3/
DO  - 10.4064/fm217-2-3
LA  - en
ID  - 10_4064_fm217_2_3
ER  - 
%0 Journal Article
%A Jeffrey Strom
%T Finite-dimensional spaces in resolving classes
%J Fundamenta Mathematicae
%D 2012
%P 171-187
%V 217
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm217-2-3/
%R 10.4064/fm217-2-3
%G en
%F 10_4064_fm217_2_3
Jeffrey Strom. Finite-dimensional spaces in resolving classes. Fundamenta Mathematicae, Tome 217 (2012) no. 2, pp. 171-187. doi : 10.4064/fm217-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm217-2-3/

Cité par Sources :