Ordinal remainders of classical $\psi$-spaces
Fundamenta Mathematicae, Tome 217 (2012) no. 1, pp. 83-93.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\omega$ denote the set of natural numbers. We prove: for every mod-finite ascending chain $\{T_\alpha:\alpha\lambda\}$ of infinite subsets of $\omega$, there exists $\mathcal M\subset[\omega]^\omega$, an infinite maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such that the Stone–Čech remainder $\beta\psi\setminus \psi$ of the associated $\psi$-space, $\psi=\psi(\omega,\mathcal M)$, is homeomorphic to $\lambda+1$ with the order topology. We also prove that for every $\lambda\mathfrak t^+$, where $\mathfrak t$ is the tower number, there exists a mod-finite ascending chain $\{T_\alpha:\alpha\lambda\}$, hence a $\psi$-space with Stone–Čech remainder homeomorphic to $\lambda +1$. This generalizes a result credited to S. Mrówka by J. Terasawa which states that there is a MADF $\mathcal M$ such that $\beta\psi\setminus \psi$ is homeomorphic to $\omega_1+1$.
DOI : 10.4064/fm217-1-7
Keywords: omega denote set natural numbers prove every mod finite ascending chain alpha alpha lambda infinite subsets omega there exists mathcal subset omega omega infinite maximal almost disjoint family madf infinite subsets natural numbers stone ech remainder beta psi setminus psi associated psi space psi psi omega mathcal homeomorphic lambda order topology prove every lambda mathfrak where mathfrak tower number there exists mod finite ascending chain alpha alpha lambda hence psi space stone ech remainder homeomorphic lambda generalizes result credited wka terasawa which states there madf mathcal beta psi setminus psi homeomorphic omega

Alan Dow 1 ; Jerry E. Vaughan 2

1 Department of Mathematics and Statistics University of North Carolina at Charlotte Charlotte, NC 28223, U.S.A.
2 Department of Mathematics and Statistics University of North Carolina at Greensboro Greensboro, NC 27412, U.S.A.
@article{10_4064_fm217_1_7,
     author = {Alan Dow and Jerry E.  Vaughan},
     title = {Ordinal remainders of classical $\psi$-spaces},
     journal = {Fundamenta Mathematicae},
     pages = {83--93},
     publisher = {mathdoc},
     volume = {217},
     number = {1},
     year = {2012},
     doi = {10.4064/fm217-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm217-1-7/}
}
TY  - JOUR
AU  - Alan Dow
AU  - Jerry E.  Vaughan
TI  - Ordinal remainders of classical $\psi$-spaces
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 83
EP  - 93
VL  - 217
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm217-1-7/
DO  - 10.4064/fm217-1-7
LA  - en
ID  - 10_4064_fm217_1_7
ER  - 
%0 Journal Article
%A Alan Dow
%A Jerry E.  Vaughan
%T Ordinal remainders of classical $\psi$-spaces
%J Fundamenta Mathematicae
%D 2012
%P 83-93
%V 217
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm217-1-7/
%R 10.4064/fm217-1-7
%G en
%F 10_4064_fm217_1_7
Alan Dow; Jerry E.  Vaughan. Ordinal remainders of classical $\psi$-spaces. Fundamenta Mathematicae, Tome 217 (2012) no. 1, pp. 83-93. doi : 10.4064/fm217-1-7. http://geodesic.mathdoc.fr/articles/10.4064/fm217-1-7/

Cité par Sources :