Comparing the closed almost disjointness and
dominating numbers
Fundamenta Mathematicae, Tome 217 (2012) no. 1, pp. 73-81
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if there is a dominating family of size $\aleph _{1}$, then there are $\aleph _{1}$ many compact subsets of $\omega ^{\omega }$ whose union is a maximal almost disjoint family of functions that is also maximal with respect to infinite partial functions.
Keywords:
prove there dominating family size aleph there aleph many compact subsets omega omega whose union maximal almost disjoint family functions maximal respect infinite partial functions
Affiliations des auteurs :
Dilip Raghavan 1 ; Saharon Shelah 2
@article{10_4064_fm217_1_6,
author = {Dilip Raghavan and Saharon Shelah},
title = {Comparing the closed almost disjointness and
dominating numbers},
journal = {Fundamenta Mathematicae},
pages = {73--81},
publisher = {mathdoc},
volume = {217},
number = {1},
year = {2012},
doi = {10.4064/fm217-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm217-1-6/}
}
TY - JOUR AU - Dilip Raghavan AU - Saharon Shelah TI - Comparing the closed almost disjointness and dominating numbers JO - Fundamenta Mathematicae PY - 2012 SP - 73 EP - 81 VL - 217 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm217-1-6/ DO - 10.4064/fm217-1-6 LA - en ID - 10_4064_fm217_1_6 ER -
Dilip Raghavan; Saharon Shelah. Comparing the closed almost disjointness and dominating numbers. Fundamenta Mathematicae, Tome 217 (2012) no. 1, pp. 73-81. doi: 10.4064/fm217-1-6
Cité par Sources :