Dynamical characterization of C-sets and its application
Fundamenta Mathematicae, Tome 216 (2012) no. 3, pp. 259-286.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We set up a general correspondence between algebraic properties of $\beta\mathbb N$ and sets defined by dynamical properties. In particular, we obtain a dynamical characterization of C-sets, i.e., sets satisfying the strong Central Sets Theorem. As an application, we show that Rado systems are solvable in C-sets.
DOI : 10.4064/fm216-3-4
Keywords: set general correspondence between algebraic properties beta mathbb sets defined dynamical properties particular obtain dynamical characterization c sets sets satisfying strong central sets theorem application rado systems solvable c sets

Jian Li 1

1 Department of Mathematics University of Science and Technology of China Hefei, Anhui, 230026, P.R. China
@article{10_4064_fm216_3_4,
     author = {Jian Li},
     title = {Dynamical characterization of {C-sets} and its application},
     journal = {Fundamenta Mathematicae},
     pages = {259--286},
     publisher = {mathdoc},
     volume = {216},
     number = {3},
     year = {2012},
     doi = {10.4064/fm216-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm216-3-4/}
}
TY  - JOUR
AU  - Jian Li
TI  - Dynamical characterization of C-sets and its application
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 259
EP  - 286
VL  - 216
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm216-3-4/
DO  - 10.4064/fm216-3-4
LA  - en
ID  - 10_4064_fm216_3_4
ER  - 
%0 Journal Article
%A Jian Li
%T Dynamical characterization of C-sets and its application
%J Fundamenta Mathematicae
%D 2012
%P 259-286
%V 216
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm216-3-4/
%R 10.4064/fm216-3-4
%G en
%F 10_4064_fm216_3_4
Jian Li. Dynamical characterization of C-sets and its application. Fundamenta Mathematicae, Tome 216 (2012) no. 3, pp. 259-286. doi : 10.4064/fm216-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm216-3-4/

Cité par Sources :