Characterization of $\sigma $-porosity via an infinite game
Fundamenta Mathematicae, Tome 216 (2012) no. 2, pp. 109-118.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be an arbitrary metric space and $P$ be a porosity-like relation on $X$. We describe an infinite game which gives a characterization of $\sigma $-$P$-porous sets in $X$. This characterization can be applied to ordinary porosity above all but also to many other variants of porosity.
DOI : 10.4064/fm216-2-2
Keywords: arbitrary metric space porosity like relation nbsp describe infinite game which gives characterization sigma p porous sets nbsp characterization applied ordinary porosity above many other variants porosity

Martin Doležal 1

1 Department of Mathematical Analysis Faculty of Mathematics and Physics Charles University Sokolovská 83 186 75 Praha 8, Czech Republic
@article{10_4064_fm216_2_2,
     author = {Martin Dole\v{z}al},
     title = {Characterization of $\sigma $-porosity via an infinite game},
     journal = {Fundamenta Mathematicae},
     pages = {109--118},
     publisher = {mathdoc},
     volume = {216},
     number = {2},
     year = {2012},
     doi = {10.4064/fm216-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-2/}
}
TY  - JOUR
AU  - Martin Doležal
TI  - Characterization of $\sigma $-porosity via an infinite game
JO  - Fundamenta Mathematicae
PY  - 2012
SP  - 109
EP  - 118
VL  - 216
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-2/
DO  - 10.4064/fm216-2-2
LA  - en
ID  - 10_4064_fm216_2_2
ER  - 
%0 Journal Article
%A Martin Doležal
%T Characterization of $\sigma $-porosity via an infinite game
%J Fundamenta Mathematicae
%D 2012
%P 109-118
%V 216
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-2/
%R 10.4064/fm216-2-2
%G en
%F 10_4064_fm216_2_2
Martin Doležal. Characterization of $\sigma $-porosity via an infinite game. Fundamenta Mathematicae, Tome 216 (2012) no. 2, pp. 109-118. doi : 10.4064/fm216-2-2. http://geodesic.mathdoc.fr/articles/10.4064/fm216-2-2/

Cité par Sources :