Nonnormality points of $\beta X \setminus X$
Fundamenta Mathematicae, Tome 214 (2011) no. 3, pp. 269-283
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be a crowded metric space of weight $\def\k{\kappa}\k$ that is either $\def\wk{\k^\omega\text{-like}}\wk$ or locally compact.
Let $\def\b{\beta}\def\bs{\setminus}y \in \b X \bs X$ and assume GCH. Then a space of nonuniform ultrafilters embeds as a closed
subspace of $\def\b{\beta}\def\bs{\setminus}(\b X \bs X)\bs \{y\}$ with $y$ as the unique limit point. If, in addition, $y$ is a regular $z$-ultrafilter,
then the space of nonuniform ultrafilters is not normal, and hence $\def\b{\beta}\def\bs{\setminus}(\b X \bs X)\bs \{y\}$ is not normal.
Keywords:
crowded metric space weight def kappa either def omega text like locally compact def beta def setminus assume gch space nonuniform ultrafilters embeds closed subspace def beta def setminus unique limit point addition regular z ultrafilter space nonuniform ultrafilters normal hence def beta def setminus normal
Affiliations des auteurs :
William Fleissner 1 ; Lynne Yengulalp 2
@article{10_4064_fm214_3_4,
author = {William Fleissner and Lynne Yengulalp},
title = {Nonnormality points of $\beta X \setminus X$},
journal = {Fundamenta Mathematicae},
pages = {269--283},
publisher = {mathdoc},
volume = {214},
number = {3},
year = {2011},
doi = {10.4064/fm214-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm214-3-4/}
}
TY - JOUR AU - William Fleissner AU - Lynne Yengulalp TI - Nonnormality points of $\beta X \setminus X$ JO - Fundamenta Mathematicae PY - 2011 SP - 269 EP - 283 VL - 214 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm214-3-4/ DO - 10.4064/fm214-3-4 LA - en ID - 10_4064_fm214_3_4 ER -
William Fleissner; Lynne Yengulalp. Nonnormality points of $\beta X \setminus X$. Fundamenta Mathematicae, Tome 214 (2011) no. 3, pp. 269-283. doi: 10.4064/fm214-3-4
Cité par Sources :