A Hanf number for saturation and omission
Fundamenta Mathematicae, Tome 213 (2011) no. 3, pp. 255-270
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Suppose $\boldsymbol t =(T,T_1,p)$ is a
triple of two countable theories $T\subseteq T_1$ in vocabularies
$\tau \subset \tau_1$ and a $\tau_1$-type $p$ over the empty set.
We show that the Hanf number for the property `there is a model $M_1$ of
$T_1$ which omits $p$, but $M_1 {\restriction} \tau$ is saturated' is
essentially equal to the Löwenheim number of second order logic.
In Section 4 we make exact computations of these Hanf
numbers and note some distinctions between `first order' and `second
order quantification'. In particular, we show that if $\kappa$ is
uncountable, then
$h^3(L_{\omega,\omega}(Q), \kappa) = h^3(L_{\omega_1,\omega}, \kappa)$, where $h^3$ is the `normal' notion
of Hanf function (Definition 4.12).
Keywords:
suppose boldsymbol triple countable theories subseteq vocabularies tau subset tau tau type empty set hanf number property there model which omits nbsp restriction tau saturated essentially equal wenheim number second order logic section nbsp make exact computations these hanf numbers note distinctions between first order second order quantification particular kappa uncountable omega omega kappa omega omega kappa where normal notion hanf function definition nbsp
Affiliations des auteurs :
John T. Baldwin 1 ; Saharon Shelah 2
@article{10_4064_fm213_3_5,
author = {John T. Baldwin and Saharon Shelah},
title = {A {Hanf} number for saturation and omission},
journal = {Fundamenta Mathematicae},
pages = {255--270},
publisher = {mathdoc},
volume = {213},
number = {3},
year = {2011},
doi = {10.4064/fm213-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm213-3-5/}
}
TY - JOUR AU - John T. Baldwin AU - Saharon Shelah TI - A Hanf number for saturation and omission JO - Fundamenta Mathematicae PY - 2011 SP - 255 EP - 270 VL - 213 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm213-3-5/ DO - 10.4064/fm213-3-5 LA - en ID - 10_4064_fm213_3_5 ER -
John T. Baldwin; Saharon Shelah. A Hanf number for saturation and omission. Fundamenta Mathematicae, Tome 213 (2011) no. 3, pp. 255-270. doi: 10.4064/fm213-3-5
Cité par Sources :