A Cantor set in the plane that is not $\sigma$-monotone
Fundamenta Mathematicae, Tome 213 (2011) no. 3, pp. 221-232.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A metric space $(X,d)$ is monotone if there is a linear order $$ on $X$ and a constant $c$ such that $d(x,y)\leq cd(x,z)$ for all $x y z$ in $X$, and $\sigma$-monotone if it is a countable union of monotone subspaces. A planar set homeomorphic to the Cantor set that is not $\sigma$-monotone is constructed and investigated. It follows that there is a metric on a Cantor set that is not $\sigma$-monotone. This answers a question raised by the second author.
DOI : 10.4064/fm213-3-3
Keywords: metric space monotone there linear order constant leq sigma monotone countable union monotone subspaces planar set homeomorphic cantor set sigma monotone constructed investigated follows there metric cantor set sigma monotone answers question raised second author

Aleš Nekvinda 1 ; Ondřej Zindulka 1

1 Department of Mathematics Faculty of Civil Engineering Czech Technical University Thákurova 7 160 00 Praha 6, Czech Republic
@article{10_4064_fm213_3_3,
     author = {Ale\v{s} Nekvinda and Ond\v{r}ej Zindulka},
     title = {A {Cantor} set in the plane that is not $\sigma$-monotone},
     journal = {Fundamenta Mathematicae},
     pages = {221--232},
     publisher = {mathdoc},
     volume = {213},
     number = {3},
     year = {2011},
     doi = {10.4064/fm213-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm213-3-3/}
}
TY  - JOUR
AU  - Aleš Nekvinda
AU  - Ondřej Zindulka
TI  - A Cantor set in the plane that is not $\sigma$-monotone
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 221
EP  - 232
VL  - 213
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm213-3-3/
DO  - 10.4064/fm213-3-3
LA  - en
ID  - 10_4064_fm213_3_3
ER  - 
%0 Journal Article
%A Aleš Nekvinda
%A Ondřej Zindulka
%T A Cantor set in the plane that is not $\sigma$-monotone
%J Fundamenta Mathematicae
%D 2011
%P 221-232
%V 213
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm213-3-3/
%R 10.4064/fm213-3-3
%G en
%F 10_4064_fm213_3_3
Aleš Nekvinda; Ondřej Zindulka. A Cantor set in the plane that is not $\sigma$-monotone. Fundamenta Mathematicae, Tome 213 (2011) no. 3, pp. 221-232. doi : 10.4064/fm213-3-3. http://geodesic.mathdoc.fr/articles/10.4064/fm213-3-3/

Cité par Sources :