A Cantor set in the plane that is not $\sigma$-monotone
Fundamenta Mathematicae, Tome 213 (2011) no. 3, pp. 221-232
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A metric space $(X,d)$ is monotone
if there is a linear order $$ on $X$ and a constant $c$
such that $d(x,y)\leq cd(x,z)$ for all $x y z$ in $X$, and
$\sigma$-monotone if it is a countable union of monotone subspaces.
A planar set homeomorphic to the Cantor set that is not $\sigma$-monotone
is constructed and investigated.
It follows that there is a metric
on a Cantor set that is not $\sigma$-monotone. This answers a question
raised by the second author.
Keywords:
metric space monotone there linear order constant leq sigma monotone countable union monotone subspaces planar set homeomorphic cantor set sigma monotone constructed investigated follows there metric cantor set sigma monotone answers question raised second author
Affiliations des auteurs :
Aleš Nekvinda 1 ; Ondřej Zindulka 1
@article{10_4064_fm213_3_3,
author = {Ale\v{s} Nekvinda and Ond\v{r}ej Zindulka},
title = {A {Cantor} set in the plane that is not $\sigma$-monotone},
journal = {Fundamenta Mathematicae},
pages = {221--232},
publisher = {mathdoc},
volume = {213},
number = {3},
year = {2011},
doi = {10.4064/fm213-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm213-3-3/}
}
TY - JOUR AU - Aleš Nekvinda AU - Ondřej Zindulka TI - A Cantor set in the plane that is not $\sigma$-monotone JO - Fundamenta Mathematicae PY - 2011 SP - 221 EP - 232 VL - 213 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm213-3-3/ DO - 10.4064/fm213-3-3 LA - en ID - 10_4064_fm213_3_3 ER -
Aleš Nekvinda; Ondřej Zindulka. A Cantor set in the plane that is not $\sigma$-monotone. Fundamenta Mathematicae, Tome 213 (2011) no. 3, pp. 221-232. doi: 10.4064/fm213-3-3
Cité par Sources :