Preservation of the Borel class under open-$LC$ functions
Fundamenta Mathematicae, Tome 213 (2011) no. 2, pp. 191-195.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a Borel subset of the Cantor set $\textbf{C}$ of additive or multiplicative class $\alpha$, and $f: X \to Y $  be a continuous function onto $Y \subset \textbf{C}$ with compact preimages of points. If the image $f(U)$ of every clopen set $U$ is the intersection of an open and a closed set, then $Y$ is a Borel set of the same class $\alpha$. This result generalizes similar results for open and closed functions.
DOI : 10.4064/fm213-2-4
Keywords: borel subset cantor set textbf additive multiplicative class alpha nbsp continuous function subset textbf compact preimages points image every clopen set intersection closed set borel set class alpha result generalizes similar results closed functions

Alexey Ostrovsky 1

1 Helmut-Käutner Str. 25 81739 München, Germany
@article{10_4064_fm213_2_4,
     author = {Alexey Ostrovsky},
     title = {Preservation of  the  {Borel} class under open-$LC$  functions},
     journal = {Fundamenta Mathematicae},
     pages = {191--195},
     publisher = {mathdoc},
     volume = {213},
     number = {2},
     year = {2011},
     doi = {10.4064/fm213-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm213-2-4/}
}
TY  - JOUR
AU  - Alexey Ostrovsky
TI  - Preservation of  the  Borel class under open-$LC$  functions
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 191
EP  - 195
VL  - 213
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm213-2-4/
DO  - 10.4064/fm213-2-4
LA  - en
ID  - 10_4064_fm213_2_4
ER  - 
%0 Journal Article
%A Alexey Ostrovsky
%T Preservation of  the  Borel class under open-$LC$  functions
%J Fundamenta Mathematicae
%D 2011
%P 191-195
%V 213
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm213-2-4/
%R 10.4064/fm213-2-4
%G en
%F 10_4064_fm213_2_4
Alexey Ostrovsky. Preservation of  the  Borel class under open-$LC$  functions. Fundamenta Mathematicae, Tome 213 (2011) no. 2, pp. 191-195. doi : 10.4064/fm213-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm213-2-4/

Cité par Sources :