Quasi-orbit spaces associated to $T_0$-spaces
Fundamenta Mathematicae, Tome 211 (2011) no. 3, pp. 267-291.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G\subset\mbox{Homeo}(E)$ be a group of homeomorphisms of a topological space $E$. The class of an orbit $O$ of $G$ is the union of all orbits having the same closure as $O$. Let $E/\widetilde{G}$ be the space of classes of orbits, called the quasi-orbit space. We show that every second countable $T_0$-space $Y$ is a quasi-orbit space $E/\widetilde{G}$, where $E$ is a second countable metric space.The regular part $X_0$ of a $T_0$-space $X$ is the union of open subsets homeomorphic to $\mathbb{R}$ or to $\mathbb{S}^1$. We give a characterization of the spaces $X$ with finite singular part $X-X_0$ which are the quasi-orbit spaces of countable groups $G\subset\mbox{Homeo}_+(\mathbb{R})$.Finally we show that every finite $T_0$-space is the singular part of the quasi-leaf space of a codimension one foliation on a closed three-manifold.
DOI : 10.4064/fm211-3-4
Keywords: subset mbox homeo group homeomorphisms topological space class orbit union orbits having closure widetilde space classes orbits called quasi orbit space every second countable space quasi orbit space widetilde where second countable metric space regular part space union subsets homeomorphic mathbb mathbb characterization spaces finite singular part x x which quasi orbit spaces countable groups subset mbox homeo mathbb finally every finite space singular part quasi leaf space codimension foliation closed three manifold

C. Bonatti 1 ; H. Hattab 2 ; E. Salhi 3

1 IMB, UMR 5584 du CNRS 9 av. Alain Savary 21000 Dijon, France
2 Institut Supérieur d'Informatique et du Multimedia Route de Tunis km 10 B.P. 242, Sfax 3021, Tunisia
3 Département de Mathématiques Faculté des Sciences de Sfax Route de Soukra km 3.5 B.P. 802, Sfax 3018, Tunisia
@article{10_4064_fm211_3_4,
     author = {C. Bonatti and H. Hattab and E. Salhi},
     title = {Quasi-orbit spaces associated to $T_0$-spaces},
     journal = {Fundamenta Mathematicae},
     pages = {267--291},
     publisher = {mathdoc},
     volume = {211},
     number = {3},
     year = {2011},
     doi = {10.4064/fm211-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm211-3-4/}
}
TY  - JOUR
AU  - C. Bonatti
AU  - H. Hattab
AU  - E. Salhi
TI  - Quasi-orbit spaces associated to $T_0$-spaces
JO  - Fundamenta Mathematicae
PY  - 2011
SP  - 267
EP  - 291
VL  - 211
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm211-3-4/
DO  - 10.4064/fm211-3-4
LA  - en
ID  - 10_4064_fm211_3_4
ER  - 
%0 Journal Article
%A C. Bonatti
%A H. Hattab
%A E. Salhi
%T Quasi-orbit spaces associated to $T_0$-spaces
%J Fundamenta Mathematicae
%D 2011
%P 267-291
%V 211
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm211-3-4/
%R 10.4064/fm211-3-4
%G en
%F 10_4064_fm211_3_4
C. Bonatti; H. Hattab; E. Salhi. Quasi-orbit spaces associated to $T_0$-spaces. Fundamenta Mathematicae, Tome 211 (2011) no. 3, pp. 267-291. doi : 10.4064/fm211-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm211-3-4/

Cité par Sources :