Typical multifractal box dimensions of measures
Fundamenta Mathematicae, Tome 211 (2011) no. 3, pp. 245-266
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the typical behaviour (in the sense of Baire's category)
of the multifractal box dimensions
of measures on $\mathbb R^{d}$.
We prove that in many cases
a typical measure $\mu$ is as irregular as
possible, i.e.
the lower multifractal box dimensions of $\mu$
attain the smallest possible value
and
the upper multifractal box dimensions of $\mu$
attain the largest possible value.
Keywords:
study typical behaviour sense baires category multifractal box dimensions measures mathbb prove many cases typical measure irregular possible lower multifractal box dimensions attain smallest possible value upper multifractal box dimensions attain largest possible value
Affiliations des auteurs :
L. Olsen 1
@article{10_4064_fm211_3_3,
author = {L. Olsen},
title = {Typical multifractal box dimensions of measures},
journal = {Fundamenta Mathematicae},
pages = {245--266},
publisher = {mathdoc},
volume = {211},
number = {3},
year = {2011},
doi = {10.4064/fm211-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm211-3-3/}
}
L. Olsen. Typical multifractal box dimensions of measures. Fundamenta Mathematicae, Tome 211 (2011) no. 3, pp. 245-266. doi: 10.4064/fm211-3-3
Cité par Sources :