Metastability in the Furstenberg–Zimmer tower
Fundamenta Mathematicae, Tome 210 (2010) no. 3, pp. 243-268.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

According to the Furstenberg–Zimmer structure theorem, every measure-preserving system has a maximal distal factor, and is weak mixing relative to that factor. Furstenberg and Katznelson used this structural analysis of measure-preserving systems to provide a perspicuous proof of Szemerédi's theorem. Beleznay and Foreman showed that, in general, the transfinite construction of the maximal distal factor of a separable measure-preserving system can extend arbitrarily far into the countable ordinals. Here we show that the Furstenberg–Katznelson proof does not require the full strength of the maximal distal factor, in the sense that the proof only depends on a combinatorial weakening of its properties. We show that this combinatorially weaker property obtains fairly low in the transfinite construction, namely, by the $\omega^{\omega^\omega}$th level.
DOI : 10.4064/fm210-3-2
Mots-clés : according furstenberg zimmer structure theorem every measure preserving system has maximal distal factor weak mixing relative factor furstenberg katznelson structural analysis measure preserving systems provide perspicuous proof szemer dis theorem beleznay foreman showed general transfinite construction maximal distal factor separable measure preserving system extend arbitrarily far countable ordinals here furstenberg katznelson proof does require full strength maximal distal factor sense proof only depends combinatorial weakening its properties combinatorially weaker property obtains fairly low transfinite construction namely omega omega omega level

Jeremy Avigad 1 ; Henry Towsner 2

1 Department of Philosophy and Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213, U.S.A.
2 Department of Mathematics University of California Los Angeles, CA 90095-1555, U.S.A.
@article{10_4064_fm210_3_2,
     author = {Jeremy Avigad and Henry Towsner},
     title = {Metastability in the {Furstenberg{\textendash}Zimmer} tower},
     journal = {Fundamenta Mathematicae},
     pages = {243--268},
     publisher = {mathdoc},
     volume = {210},
     number = {3},
     year = {2010},
     doi = {10.4064/fm210-3-2},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm210-3-2/}
}
TY  - JOUR
AU  - Jeremy Avigad
AU  - Henry Towsner
TI  - Metastability in the Furstenberg–Zimmer tower
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 243
EP  - 268
VL  - 210
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm210-3-2/
DO  - 10.4064/fm210-3-2
LA  - de
ID  - 10_4064_fm210_3_2
ER  - 
%0 Journal Article
%A Jeremy Avigad
%A Henry Towsner
%T Metastability in the Furstenberg–Zimmer tower
%J Fundamenta Mathematicae
%D 2010
%P 243-268
%V 210
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm210-3-2/
%R 10.4064/fm210-3-2
%G de
%F 10_4064_fm210_3_2
Jeremy Avigad; Henry Towsner. Metastability in the Furstenberg–Zimmer tower. Fundamenta Mathematicae, Tome 210 (2010) no. 3, pp. 243-268. doi : 10.4064/fm210-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm210-3-2/

Cité par Sources :