Dynamics of circle maps with flat spots
Fundamenta Mathematicae, Tome 209 (2010) no. 3, pp. 267-290.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study a certain class of weakly order preserving, non-invertible circle maps with irrational rotation numbers and exactly one flat interval. For this class of circle maps we explain the geometric and dynamic structure of orbits. In particular, we formulate the so called upper and lower scaling rules which show an asymmetric and double exponential decay of geometry.
DOI : 10.4064/fm209-3-4
Keywords: study certain class weakly order preserving non invertible circle maps irrational rotation numbers exactly flat interval class circle maps explain geometric dynamic structure orbits particular formulate called upper lower scaling rules which asymmetric double exponential decay geometry

Jacek Graczyk 1

1 Université de Paris-Sud, Mathématique 91405 Orsay, France
@article{10_4064_fm209_3_4,
     author = {Jacek Graczyk},
     title = {Dynamics of circle maps with flat spots},
     journal = {Fundamenta Mathematicae},
     pages = {267--290},
     publisher = {mathdoc},
     volume = {209},
     number = {3},
     year = {2010},
     doi = {10.4064/fm209-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-3-4/}
}
TY  - JOUR
AU  - Jacek Graczyk
TI  - Dynamics of circle maps with flat spots
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 267
EP  - 290
VL  - 209
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm209-3-4/
DO  - 10.4064/fm209-3-4
LA  - en
ID  - 10_4064_fm209_3_4
ER  - 
%0 Journal Article
%A Jacek Graczyk
%T Dynamics of circle maps with flat spots
%J Fundamenta Mathematicae
%D 2010
%P 267-290
%V 209
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm209-3-4/
%R 10.4064/fm209-3-4
%G en
%F 10_4064_fm209_3_4
Jacek Graczyk. Dynamics of circle maps with flat spots. Fundamenta Mathematicae, Tome 209 (2010) no. 3, pp. 267-290. doi : 10.4064/fm209-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm209-3-4/

Cité par Sources :