On Dimensionsgrad, resolutions, and chainable continua
Fundamenta Mathematicae, Tome 209 (2010) no. 3, pp. 243-265
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For each natural number $n \geq 1$ and each pair of ordinals $\alpha,\beta$ with
$n \leq \alpha \leq \beta \leq \omega({\mathfrak c}^+)$, where $\omega({\mathfrak c}^+)$ is the first ordinal of cardinality
${\mathfrak c}^+$, we construct a continuum $S_{n,\alpha,\beta}$ such that(a) $\dim S_{n,\alpha,\beta}=n$;
(b) $\mathop{{\rm trDg}}\nolimits S_{n,\alpha,\beta}=\mathop{{\rm trDgo}}\nolimits S_{n,\alpha,\beta}=\alpha$;
(c) $\mathop{\rm trind} S_{n,\alpha,\beta}=\mathop{{\rm trInd}_0}\nolimits S_{n,\alpha,\beta}=\beta$;
(d) if $\beta\omega({\mathfrak c}^+)$, then $S_{n,\alpha,\beta}$ is separable and
first countable;
(e) if $n=1$, then $S_{n,\alpha,\beta}$ can be made chainable or hereditarily decomposable;
(f) if $\alpha = \beta\omega({\mathfrak c}^+)$, then $S_{n,\alpha,\beta}$ can be made hereditarily
indecomposable;
(g) if $n=1$ and $\alpha = \beta\omega({\mathfrak c}^+)$, then $S_{n,\alpha,\beta}$ can be made chainable
and hereditarily indecomposable.
In particular, we answer the question raised by Chatyrko and Fedorchuk whether every non-degenerate chainable space has
Dimensionsgrad equal to $1$. Moreover, we establish results that enable us to compute the Dimensionsgrad of a number of
spaces constructed by Charalambous, Chatyrko, and Fedorchuk.
Keywords:
each natural number geq each pair ordinals alpha beta leq alpha leq beta leq omega mathfrak where omega mathfrak first ordinal cardinality mathfrak construct continuum alpha beta dim alpha beta mathop trdg nolimits alpha beta mathop trdgo nolimits alpha beta alpha mathop trind alpha beta mathop trind nolimits alpha beta beta beta omega mathfrak alpha beta separable first countable alpha beta made chainable hereditarily decomposable alpha beta omega mathfrak alpha beta made hereditarily indecomposable alpha beta omega mathfrak alpha beta made chainable hereditarily indecomposable particular answer question raised chatyrko fedorchuk whether every non degenerate chainable space has dimensionsgrad equal moreover establish results enable compute dimensionsgrad number spaces constructed charalambous chatyrko fedorchuk
Affiliations des auteurs :
Michael G. Charalambous 1 ; Jerzy Krzempek 2
@article{10_4064_fm209_3_3,
author = {Michael G. Charalambous and Jerzy Krzempek},
title = {On {Dimensionsgrad,} resolutions, and chainable continua},
journal = {Fundamenta Mathematicae},
pages = {243--265},
publisher = {mathdoc},
volume = {209},
number = {3},
year = {2010},
doi = {10.4064/fm209-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-3-3/}
}
TY - JOUR AU - Michael G. Charalambous AU - Jerzy Krzempek TI - On Dimensionsgrad, resolutions, and chainable continua JO - Fundamenta Mathematicae PY - 2010 SP - 243 EP - 265 VL - 209 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm209-3-3/ DO - 10.4064/fm209-3-3 LA - en ID - 10_4064_fm209_3_3 ER -
Michael G. Charalambous; Jerzy Krzempek. On Dimensionsgrad, resolutions, and chainable continua. Fundamenta Mathematicae, Tome 209 (2010) no. 3, pp. 243-265. doi: 10.4064/fm209-3-3
Cité par Sources :