The Suslinian number and other cardinal invariants of continua
Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 43-57
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
By the Suslinian number $\mathop{\rm Sln}(X)$ of a continuum $X$ we understand the smallest cardinal
number $\kappa$ such that $X$ contains no disjoint family $\mathbb C$ of
non-degenerate subcontinua of size $|\mathbb C|>\kappa$. For a compact
space $X$, $\mathop{\rm Sln}(X)$ is the smallest Suslinian number of a
continuum which contains a homeomorphic copy of $X$. Our principal
result asserts that each compact space $X$ has weight
$\le\mathop{\rm Sln}(X)^+$ and is the limit of an inverse well-ordered
spectrum of length $\le \mathop{\rm Sln}(X)^+$, consisting of compacta with
weight $\le\mathop{\rm Sln}(X)$ and monotone bonding maps. Moreover,
$w(X)\le\mathop{\rm Sln}(X)$ if no $\mathop{\rm Sln}(X)^+$-Suslin tree exists. This
implies that under the Suslin Hypothesis all Suslinian continua
are metrizable, which answers a question of
Daniel et al.
[Canad. Math. Bull. 48 (2005)]. On the
other hand, the negation of the Suslin Hypothesis is equivalent to
the existence of a hereditarily separable non-metrizable Suslinian
continuum. If $X$ is a continuum with $\mathop{\rm Sln}(X)2^{\aleph_0}$, then
$X$ is 1-dimensional, has rim-weight $\le\mathop{\rm Sln}(X)$ and weight
$w(X)\ge\mathop{\rm Sln}(X)$. Our main tool is the inequality
$w(X)\le\mathop{\rm Sln}(X)\cdot w(f(X))$ holding for any light map $f:X\to
Y$.
Keywords:
suslinian number mathop sln continuum understand smallest cardinal number kappa contains disjoint family mathbb non degenerate subcontinua size mathbb kappa compact space mathop sln smallest suslinian number continuum which contains homeomorphic copy principal result asserts each compact space has weight mathop sln limit inverse well ordered spectrum length mathop sln consisting compacta weight mathop sln monotone bonding maps moreover mathop sln mathop sln suslin tree exists implies under suslin hypothesis suslinian continua metrizable which answers question daniel canad math bull other negation suslin hypothesis equivalent existence hereditarily separable non metrizable suslinian continuum continuum mathop sln aleph dimensional has rim weight mathop sln weight mathop sln main tool inequality mathop sln cdot holding light map
Affiliations des auteurs :
T. Banakh 1 ; V. V. Fedorchuk 2 ; J. Nikiel 3 ; M. Tuncali 4
@article{10_4064_fm209_1_4,
author = {T. Banakh and V. V. Fedorchuk and J. Nikiel and M. Tuncali},
title = {The {Suslinian} number and other cardinal invariants of continua},
journal = {Fundamenta Mathematicae},
pages = {43--57},
year = {2010},
volume = {209},
number = {1},
doi = {10.4064/fm209-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-4/}
}
TY - JOUR AU - T. Banakh AU - V. V. Fedorchuk AU - J. Nikiel AU - M. Tuncali TI - The Suslinian number and other cardinal invariants of continua JO - Fundamenta Mathematicae PY - 2010 SP - 43 EP - 57 VL - 209 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-4/ DO - 10.4064/fm209-1-4 LA - en ID - 10_4064_fm209_1_4 ER -
%0 Journal Article %A T. Banakh %A V. V. Fedorchuk %A J. Nikiel %A M. Tuncali %T The Suslinian number and other cardinal invariants of continua %J Fundamenta Mathematicae %D 2010 %P 43-57 %V 209 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-4/ %R 10.4064/fm209-1-4 %G en %F 10_4064_fm209_1_4
T. Banakh; V. V. Fedorchuk; J. Nikiel; M. Tuncali. The Suslinian number and other cardinal invariants of continua. Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 43-57. doi: 10.4064/fm209-1-4
Cité par Sources :