The Suslinian number and other cardinal invariants of continua
Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 43-57.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

By the Suslinian number $\mathop{\rm Sln}(X)$ of a continuum $X$ we understand the smallest cardinal number $\kappa$ such that $X$ contains no disjoint family $\mathbb C$ of non-degenerate subcontinua of size $|\mathbb C|>\kappa$. For a compact space $X$, $\mathop{\rm Sln}(X)$ is the smallest Suslinian number of a continuum which contains a homeomorphic copy of $X$. Our principal result asserts that each compact space $X$ has weight $\le\mathop{\rm Sln}(X)^+$ and is the limit of an inverse well-ordered spectrum of length $\le \mathop{\rm Sln}(X)^+$, consisting of compacta with weight $\le\mathop{\rm Sln}(X)$ and monotone bonding maps. Moreover, $w(X)\le\mathop{\rm Sln}(X)$ if no $\mathop{\rm Sln}(X)^+$-Suslin tree exists. This implies that under the Suslin Hypothesis all Suslinian continua are metrizable, which answers a question of Daniel et al. [Canad. Math. Bull. 48 (2005)]. On the other hand, the negation of the Suslin Hypothesis is equivalent to the existence of a hereditarily separable non-metrizable Suslinian continuum. If $X$ is a continuum with $\mathop{\rm Sln}(X)2^{\aleph_0}$, then $X$ is 1-dimensional, has rim-weight $\le\mathop{\rm Sln}(X)$ and weight $w(X)\ge\mathop{\rm Sln}(X)$. Our main tool is the inequality $w(X)\le\mathop{\rm Sln}(X)\cdot w(f(X))$ holding for any light map $f:X\to Y$.
DOI : 10.4064/fm209-1-4
Keywords: suslinian number mathop sln continuum understand smallest cardinal number kappa contains disjoint family mathbb non degenerate subcontinua size mathbb kappa compact space mathop sln smallest suslinian number continuum which contains homeomorphic copy principal result asserts each compact space has weight mathop sln limit inverse well ordered spectrum length mathop sln consisting compacta weight mathop sln monotone bonding maps moreover mathop sln mathop sln suslin tree exists implies under suslin hypothesis suslinian continua metrizable which answers question daniel canad math bull other negation suslin hypothesis equivalent existence hereditarily separable non metrizable suslinian continuum continuum mathop sln aleph dimensional has rim weight mathop sln weight mathop sln main tool inequality mathop sln cdot holding light map

T. Banakh 1 ; V. V. Fedorchuk 2 ; J. Nikiel 3 ; M. Tuncali 4

1 Uniwersytet Humanistyczno-Przyrodniczy Jana Kochanowskiego Kielce, Poland and Department of Mathematics Ivan Franko Lviv National University Lviv, Ukraine
2 Faculty of Mechanics and Mathematics Lomonosov Moscow State University Vorob'evy Gory, 1 Moscow, Russia
3 Instytut Matematyki i Informatyki Uniwersytet Opolski Oleska 48 45-052 Opole, Poland
4 Nipissing University North Bay, Ontario, Canada
@article{10_4064_fm209_1_4,
     author = {T. Banakh and V. V. Fedorchuk and J. Nikiel and M. Tuncali},
     title = {The {Suslinian} number and other cardinal invariants of continua},
     journal = {Fundamenta Mathematicae},
     pages = {43--57},
     publisher = {mathdoc},
     volume = {209},
     number = {1},
     year = {2010},
     doi = {10.4064/fm209-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-4/}
}
TY  - JOUR
AU  - T. Banakh
AU  - V. V. Fedorchuk
AU  - J. Nikiel
AU  - M. Tuncali
TI  - The Suslinian number and other cardinal invariants of continua
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 43
EP  - 57
VL  - 209
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-4/
DO  - 10.4064/fm209-1-4
LA  - en
ID  - 10_4064_fm209_1_4
ER  - 
%0 Journal Article
%A T. Banakh
%A V. V. Fedorchuk
%A J. Nikiel
%A M. Tuncali
%T The Suslinian number and other cardinal invariants of continua
%J Fundamenta Mathematicae
%D 2010
%P 43-57
%V 209
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-4/
%R 10.4064/fm209-1-4
%G en
%F 10_4064_fm209_1_4
T. Banakh; V. V. Fedorchuk; J. Nikiel; M. Tuncali. The Suslinian number and other cardinal invariants of continua. Fundamenta Mathematicae, Tome 209 (2010) no. 1, pp. 43-57. doi : 10.4064/fm209-1-4. http://geodesic.mathdoc.fr/articles/10.4064/fm209-1-4/

Cité par Sources :