Some 2-point sets
Fundamenta Mathematicae, Tome 208 (2010) no. 1, pp. 87-91.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Chad, Knight Suabedissen [Fund. Math. 203 (2009)] recently proved, assuming CH, that there is a $2$-point set included in the union of countably many concentric circles. This result is obtained here without any additional set-theoretic hypotheses.
DOI : 10.4064/fm208-1-6
Keywords: chad knight amp suabedissen fund math recently proved assuming there point set included union countably many concentric circles result obtained here without additional set theoretic hypotheses

James H. Schmerl 1

1 Department of Mathematics University of Connecticut Storrs, CT 06269-9003, U.S.A.
@article{10_4064_fm208_1_6,
     author = {James H. Schmerl},
     title = {Some 2-point sets},
     journal = {Fundamenta Mathematicae},
     pages = {87--91},
     publisher = {mathdoc},
     volume = {208},
     number = {1},
     year = {2010},
     doi = {10.4064/fm208-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm208-1-6/}
}
TY  - JOUR
AU  - James H. Schmerl
TI  - Some 2-point sets
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 87
EP  - 91
VL  - 208
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm208-1-6/
DO  - 10.4064/fm208-1-6
LA  - en
ID  - 10_4064_fm208_1_6
ER  - 
%0 Journal Article
%A James H. Schmerl
%T Some 2-point sets
%J Fundamenta Mathematicae
%D 2010
%P 87-91
%V 208
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm208-1-6/
%R 10.4064/fm208-1-6
%G en
%F 10_4064_fm208_1_6
James H. Schmerl. Some 2-point sets. Fundamenta Mathematicae, Tome 208 (2010) no. 1, pp. 87-91. doi : 10.4064/fm208-1-6. http://geodesic.mathdoc.fr/articles/10.4064/fm208-1-6/

Cité par Sources :