Cofinal completeness of the Hausdorff metric topology
Fundamenta Mathematicae, Tome 208 (2010) no. 1, pp. 75-85
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A net in a Hausdorff uniform space is called cofinally Cauchy if for each entourage, there exists a cofinal (rather than residual) set of indices whose corresponding terms are pairwise within the entourage. In a metric space equipped with the associated metric uniformity, if each cofinally Cauchy sequence has a cluster point, then so does each cofinally Cauchy net, and the space is called cofinally complete. Here we give necessary and sufficient conditions for the nonempty closed subsets of the metric space equipped with Hausdorff distance to be cofinally complete.
Keywords:
net hausdorff uniform space called cofinally cauchy each entourage there exists cofinal rather residual set indices whose corresponding terms pairwise within entourage metric space equipped associated metric uniformity each cofinally cauchy sequence has cluster point does each cofinally cauchy net space called cofinally complete here necessary sufficient conditions nonempty closed subsets metric space equipped hausdorff distance cofinally complete
Affiliations des auteurs :
Gerald Beer 1 ; Giuseppe Di Maio 2
@article{10_4064_fm208_1_5,
author = {Gerald Beer and Giuseppe Di Maio},
title = {Cofinal completeness of the {Hausdorff} metric topology},
journal = {Fundamenta Mathematicae},
pages = {75--85},
publisher = {mathdoc},
volume = {208},
number = {1},
year = {2010},
doi = {10.4064/fm208-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm208-1-5/}
}
TY - JOUR AU - Gerald Beer AU - Giuseppe Di Maio TI - Cofinal completeness of the Hausdorff metric topology JO - Fundamenta Mathematicae PY - 2010 SP - 75 EP - 85 VL - 208 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm208-1-5/ DO - 10.4064/fm208-1-5 LA - en ID - 10_4064_fm208_1_5 ER -
Gerald Beer; Giuseppe Di Maio. Cofinal completeness of the Hausdorff metric topology. Fundamenta Mathematicae, Tome 208 (2010) no. 1, pp. 75-85. doi: 10.4064/fm208-1-5
Cité par Sources :