The instability of nonseparable complete
Erdős
spaces and representations in $\mathbb R$-trees
Fundamenta Mathematicae, Tome 207 (2010) no. 3, pp. 197-210
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
One way to generalize complete Erdős space ${\mathfrak E}_{\rm c}$
is to consider uncountable products of zero-dimensional
$G_\delta$-subsets of the real line, intersected with an appropriate Banach space. The resulting (nonseparable)
complete Erdős spaces can be fully classified by only two cardinal invariants, as done in an earlier paper of
the authors together with J. van Mill. As we think this is the correct way to generalize the concept of complete
Erdős space to a nonseparable setting, natural questions arise about analogies between the behaviour of
complete Erdős space and its generalizations. The discovery that ${\mathfrak E}_{\rm c}$ is unstable, by which we mean that
the space is not homeomorphic to its infinite power, by Dijkstra, van Mill, and Steprāns, led to the solution
of a series of problems in the literature. In the
present paper we prove by a different method that our
nonseparable complete Erdős spaces are also unstable.
Another application of ${\mathfrak E}_{\rm c}$ is that it is
homeomorphic to the endpoint set of the universal separable $\mathbb R$-tree. Our standard models can also be
represented as endpoint sets of more general $\mathbb R$-trees, but some universality properties are lost
Keywords:
generalize complete erd space mathfrak consider uncountable products zero dimensional delta subsets real line intersected appropriate banach space resulting nonseparable complete erd spaces fully classified only cardinal invariants done earlier paper authors together van mill think correct generalize concept complete erd space nonseparable setting natural questions arise about analogies between behaviour complete erd space its generalizations discovery mathfrak unstable which mean space homeomorphic its infinite power dijkstra van mill stepr led solution series problems literature present paper prove different method nonseparable complete erd spaces unstable another application mathfrak homeomorphic endpoint set universal separable mathbb r tree standard models represented endpoint sets general mathbb r trees universality properties lost
Affiliations des auteurs :
Jan J. Dijkstra 1 ; Kirsten I. S. Valkenburg 1
@article{10_4064_fm207_3_1,
author = {Jan J. Dijkstra and Kirsten I. S. Valkenburg},
title = {The instability of nonseparable complete {
Erd\H{o}s}
spaces and representations in $\mathbb R$-trees},
journal = {Fundamenta Mathematicae},
pages = {197--210},
publisher = {mathdoc},
volume = {207},
number = {3},
year = {2010},
doi = {10.4064/fm207-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm207-3-1/}
}
TY - JOUR AU - Jan J. Dijkstra AU - Kirsten I. S. Valkenburg TI - The instability of nonseparable complete Erdős spaces and representations in $\mathbb R$-trees JO - Fundamenta Mathematicae PY - 2010 SP - 197 EP - 210 VL - 207 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm207-3-1/ DO - 10.4064/fm207-3-1 LA - en ID - 10_4064_fm207_3_1 ER -
%0 Journal Article %A Jan J. Dijkstra %A Kirsten I. S. Valkenburg %T The instability of nonseparable complete Erdős spaces and representations in $\mathbb R$-trees %J Fundamenta Mathematicae %D 2010 %P 197-210 %V 207 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm207-3-1/ %R 10.4064/fm207-3-1 %G en %F 10_4064_fm207_3_1
Jan J. Dijkstra; Kirsten I. S. Valkenburg. The instability of nonseparable complete Erdős spaces and representations in $\mathbb R$-trees. Fundamenta Mathematicae, Tome 207 (2010) no. 3, pp. 197-210. doi: 10.4064/fm207-3-1
Cité par Sources :