Topological friction in aperiodic minimal $\mathbb R^m$-actions
Fundamenta Mathematicae, Tome 207 (2010) no. 2, pp. 175-178.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a continuous map $f$ preserving orbits of an aperiodic $\mathbb R^m$-action on a compact space, its displacement function assigns to $x$ the “time” $t \in \mathbb R^m$ it takes to move $x$ to $f(x)$. We show that this function is continuous if the action is minimal. In particular, $f$ is homotopic to the identity along the orbits of the action.
DOI : 10.4064/fm207-2-5
Keywords: continuous map preserving orbits aperiodic mathbb m action compact space its displacement function assigns time mathbb takes move function continuous action minimal particular homotopic identity along orbits action

Jarosław Kwapisz 1

1 Department of Mathematical Sciences Montana State University Bozeman, MT 59717-2400, U.S.A.
@article{10_4064_fm207_2_5,
     author = {Jaros{\l}aw Kwapisz},
     title = {Topological friction in aperiodic minimal $\mathbb R^m$-actions},
     journal = {Fundamenta Mathematicae},
     pages = {175--178},
     publisher = {mathdoc},
     volume = {207},
     number = {2},
     year = {2010},
     doi = {10.4064/fm207-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm207-2-5/}
}
TY  - JOUR
AU  - Jarosław Kwapisz
TI  - Topological friction in aperiodic minimal $\mathbb R^m$-actions
JO  - Fundamenta Mathematicae
PY  - 2010
SP  - 175
EP  - 178
VL  - 207
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm207-2-5/
DO  - 10.4064/fm207-2-5
LA  - en
ID  - 10_4064_fm207_2_5
ER  - 
%0 Journal Article
%A Jarosław Kwapisz
%T Topological friction in aperiodic minimal $\mathbb R^m$-actions
%J Fundamenta Mathematicae
%D 2010
%P 175-178
%V 207
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm207-2-5/
%R 10.4064/fm207-2-5
%G en
%F 10_4064_fm207_2_5
Jarosław Kwapisz. Topological friction in aperiodic minimal $\mathbb R^m$-actions. Fundamenta Mathematicae, Tome 207 (2010) no. 2, pp. 175-178. doi : 10.4064/fm207-2-5. http://geodesic.mathdoc.fr/articles/10.4064/fm207-2-5/

Cité par Sources :