Topological friction in aperiodic minimal $\mathbb R^m$-actions
Fundamenta Mathematicae, Tome 207 (2010) no. 2, pp. 175-178
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a continuous map $f$ preserving orbits of an aperiodic $\mathbb R^m$-action
on a compact space, its
displacement function assigns to $x$ the “time” $t \in \mathbb R^m$ it takes to move
$x$ to $f(x)$.
We show that this function is continuous if the action is minimal.
In particular, $f$ is homotopic to the identity along the orbits of the action.
Keywords:
continuous map preserving orbits aperiodic mathbb m action compact space its displacement function assigns time mathbb takes move function continuous action minimal particular homotopic identity along orbits action
Affiliations des auteurs :
Jarosław Kwapisz 1
@article{10_4064_fm207_2_5,
author = {Jaros{\l}aw Kwapisz},
title = {Topological friction in aperiodic minimal $\mathbb R^m$-actions},
journal = {Fundamenta Mathematicae},
pages = {175--178},
publisher = {mathdoc},
volume = {207},
number = {2},
year = {2010},
doi = {10.4064/fm207-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm207-2-5/}
}
TY - JOUR AU - Jarosław Kwapisz TI - Topological friction in aperiodic minimal $\mathbb R^m$-actions JO - Fundamenta Mathematicae PY - 2010 SP - 175 EP - 178 VL - 207 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm207-2-5/ DO - 10.4064/fm207-2-5 LA - en ID - 10_4064_fm207_2_5 ER -
Jarosław Kwapisz. Topological friction in aperiodic minimal $\mathbb R^m$-actions. Fundamenta Mathematicae, Tome 207 (2010) no. 2, pp. 175-178. doi: 10.4064/fm207-2-5
Cité par Sources :