Minimal number of periodic points for smooth self-maps of $S^3$
Fundamenta Mathematicae, Tome 204 (2009) no. 2, pp. 127-144.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f$ be a continuous self-map of a smooth compact connected and simply-connected manifold of dimension $m\geq 3$ and $r$ a fixed natural number. A topological invariant $D^m_r[f]$, introduced by the authors [Forum Math. 21 (2009)], is equal to the minimal number of $r$-periodic points for all smooth maps homotopic to $f$. In this paper we calculate $D^3_r[f]$ for all self-maps of $S^3$.
DOI : 10.4064/fm204-2-3
Keywords: continuous self map smooth compact connected simply connected manifold dimension geq fixed natural number topological invariant f introduced authors forum math equal minimal number r periodic points smooth maps homotopic paper calculate self maps

Grzegorz Graff 1 ; Jerzy Jezierski 2

1 Faculty of Applied Physics and Mathematics Gdańsk University of Technology Narutowicza 11/12 80-233 Gdańsk, Poland
2 Faculty of Applied Informatics and Mathematics Warsaw University of Life Sciences (SGGW) Nowoursynowska 159 00-757 Warszawa, Poland
@article{10_4064_fm204_2_3,
     author = {Grzegorz Graff and Jerzy Jezierski},
     title = {Minimal number of periodic points for
 smooth self-maps of $S^3$},
     journal = {Fundamenta Mathematicae},
     pages = {127--144},
     publisher = {mathdoc},
     volume = {204},
     number = {2},
     year = {2009},
     doi = {10.4064/fm204-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm204-2-3/}
}
TY  - JOUR
AU  - Grzegorz Graff
AU  - Jerzy Jezierski
TI  - Minimal number of periodic points for
 smooth self-maps of $S^3$
JO  - Fundamenta Mathematicae
PY  - 2009
SP  - 127
EP  - 144
VL  - 204
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm204-2-3/
DO  - 10.4064/fm204-2-3
LA  - en
ID  - 10_4064_fm204_2_3
ER  - 
%0 Journal Article
%A Grzegorz Graff
%A Jerzy Jezierski
%T Minimal number of periodic points for
 smooth self-maps of $S^3$
%J Fundamenta Mathematicae
%D 2009
%P 127-144
%V 204
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm204-2-3/
%R 10.4064/fm204-2-3
%G en
%F 10_4064_fm204_2_3
Grzegorz Graff; Jerzy Jezierski. Minimal number of periodic points for
 smooth self-maps of $S^3$. Fundamenta Mathematicae, Tome 204 (2009) no. 2, pp. 127-144. doi : 10.4064/fm204-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm204-2-3/

Cité par Sources :