Minimal number of periodic points for
smooth self-maps of $S^3$
Fundamenta Mathematicae, Tome 204 (2009) no. 2, pp. 127-144
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $f$ be a continuous self-map of a smooth compact connected and simply-connected manifold of dimension $m\geq 3$ and $r$ a fixed natural number. A topological invariant $D^m_r[f]$, introduced by the authors [Forum Math. 21 (2009)], is equal to the minimal number of $r$-periodic points for all smooth maps homotopic to $f$. In this paper we calculate $D^3_r[f]$ for all self-maps of $S^3$.
Keywords:
continuous self map smooth compact connected simply connected manifold dimension geq fixed natural number topological invariant f introduced authors forum math equal minimal number r periodic points smooth maps homotopic paper calculate self maps
Affiliations des auteurs :
Grzegorz Graff 1 ; Jerzy Jezierski 2
@article{10_4064_fm204_2_3,
author = {Grzegorz Graff and Jerzy Jezierski},
title = {Minimal number of periodic points for
smooth self-maps of $S^3$},
journal = {Fundamenta Mathematicae},
pages = {127--144},
publisher = {mathdoc},
volume = {204},
number = {2},
year = {2009},
doi = {10.4064/fm204-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm204-2-3/}
}
TY - JOUR AU - Grzegorz Graff AU - Jerzy Jezierski TI - Minimal number of periodic points for smooth self-maps of $S^3$ JO - Fundamenta Mathematicae PY - 2009 SP - 127 EP - 144 VL - 204 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm204-2-3/ DO - 10.4064/fm204-2-3 LA - en ID - 10_4064_fm204_2_3 ER -
Grzegorz Graff; Jerzy Jezierski. Minimal number of periodic points for smooth self-maps of $S^3$. Fundamenta Mathematicae, Tome 204 (2009) no. 2, pp. 127-144. doi: 10.4064/fm204-2-3
Cité par Sources :