Urysohn universal spaces as metric groups of exponent 2
Fundamenta Mathematicae, Tome 204 (2009) no. 1, pp. 1-6
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The aim of the paper is to prove that the bounded and unbounded Urysohn universal spaces have unique (up to isometric
isomorphism) structures of metric groups of exponent $2$. An algebraic-geometric characterization
of Boolean Urysohn spaces (i.e. metric groups of exponent $2$ which are metrically Urysohn spaces)
is given.
Keywords:
the paper prove bounded unbounded urysohn universal spaces have unique isometric isomorphism structures metric groups exponent algebraic geometric characterization boolean urysohn spaces metric groups exponent which metrically urysohn spaces given
Affiliations des auteurs :
Piotr Niemiec 1
@article{10_4064_fm204_1_1,
author = {Piotr Niemiec},
title = {Urysohn universal spaces as metric groups of exponent 2},
journal = {Fundamenta Mathematicae},
pages = {1--6},
publisher = {mathdoc},
volume = {204},
number = {1},
year = {2009},
doi = {10.4064/fm204-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm204-1-1/}
}
Piotr Niemiec. Urysohn universal spaces as metric groups of exponent 2. Fundamenta Mathematicae, Tome 204 (2009) no. 1, pp. 1-6. doi: 10.4064/fm204-1-1
Cité par Sources :