Urysohn universal spaces as metric groups of exponent 2
Fundamenta Mathematicae, Tome 204 (2009) no. 1, pp. 1-6.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The aim of the paper is to prove that the bounded and unbounded Urysohn universal spaces have unique (up to isometric isomorphism) structures of metric groups of exponent $2$. An algebraic-geometric characterization of Boolean Urysohn spaces (i.e. metric groups of exponent $2$ which are metrically Urysohn spaces) is given.
DOI : 10.4064/fm204-1-1
Keywords: the paper prove bounded unbounded urysohn universal spaces have unique isometric isomorphism structures metric groups exponent algebraic geometric characterization boolean urysohn spaces metric groups exponent which metrically urysohn spaces given

Piotr Niemiec 1

1 Institute of Mathematics Jagiellonian University /Lojasiewicza 6 30-348 Kraków, Poland
@article{10_4064_fm204_1_1,
     author = {Piotr Niemiec},
     title = {Urysohn universal spaces as metric groups of exponent 2},
     journal = {Fundamenta Mathematicae},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {204},
     number = {1},
     year = {2009},
     doi = {10.4064/fm204-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm204-1-1/}
}
TY  - JOUR
AU  - Piotr Niemiec
TI  - Urysohn universal spaces as metric groups of exponent 2
JO  - Fundamenta Mathematicae
PY  - 2009
SP  - 1
EP  - 6
VL  - 204
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm204-1-1/
DO  - 10.4064/fm204-1-1
LA  - en
ID  - 10_4064_fm204_1_1
ER  - 
%0 Journal Article
%A Piotr Niemiec
%T Urysohn universal spaces as metric groups of exponent 2
%J Fundamenta Mathematicae
%D 2009
%P 1-6
%V 204
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm204-1-1/
%R 10.4064/fm204-1-1
%G en
%F 10_4064_fm204_1_1
Piotr Niemiec. Urysohn universal spaces as metric groups of exponent 2. Fundamenta Mathematicae, Tome 204 (2009) no. 1, pp. 1-6. doi : 10.4064/fm204-1-1. http://geodesic.mathdoc.fr/articles/10.4064/fm204-1-1/

Cité par Sources :