Decompositions of the plane and the size of the continuum
Fundamenta Mathematicae, Tome 203 (2009) no. 1, pp. 65-74.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider a triple $\langle E_0,E_1,E_2\rangle$ of equivalence relations on $\mathbb{R}^2$ and investigate the possibility of decomposing the plane into three sets $\mathbb{R}^2=S_0 \cup S_1 \cup S_2$ in such a way that each $S_i$ intersects each $E_i$-class in finitely many points. Many results in the literature, starting with a famous theorem of Sierpiński, show that for certain triples the existence of such a decomposition is equivalent to the continuum hypothesis. We give a characterization in ZFC of the triples for which the decomposition exists. As an application we show that the plane can be covered by three sprays regardless of the size of the continuum, thus answering a question of J. H. Schmerl.
DOI : 10.4064/fm203-1-6
Keywords: consider triple langle rangle equivalence relations mathbb investigate possibility decomposing plane three sets mathbb cup cup each intersects each i class finitely many points many results literature starting famous theorem sierpi ski certain triples existence decomposition equivalent continuum hypothesis characterization zfc triples which decomposition exists application plane covered three sprays regardless size continuum answering question schmerl

Ramiro de la Vega 1

1 Universidad de los Andes Bogotá, Colombia
@article{10_4064_fm203_1_6,
     author = {Ramiro de la Vega},
     title = {Decompositions of the plane and the size of the continuum},
     journal = {Fundamenta Mathematicae},
     pages = {65--74},
     publisher = {mathdoc},
     volume = {203},
     number = {1},
     year = {2009},
     doi = {10.4064/fm203-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm203-1-6/}
}
TY  - JOUR
AU  - Ramiro de la Vega
TI  - Decompositions of the plane and the size of the continuum
JO  - Fundamenta Mathematicae
PY  - 2009
SP  - 65
EP  - 74
VL  - 203
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm203-1-6/
DO  - 10.4064/fm203-1-6
LA  - en
ID  - 10_4064_fm203_1_6
ER  - 
%0 Journal Article
%A Ramiro de la Vega
%T Decompositions of the plane and the size of the continuum
%J Fundamenta Mathematicae
%D 2009
%P 65-74
%V 203
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm203-1-6/
%R 10.4064/fm203-1-6
%G en
%F 10_4064_fm203_1_6
Ramiro de la Vega. Decompositions of the plane and the size of the continuum. Fundamenta Mathematicae, Tome 203 (2009) no. 1, pp. 65-74. doi : 10.4064/fm203-1-6. http://geodesic.mathdoc.fr/articles/10.4064/fm203-1-6/

Cité par Sources :