The weak extension property and finite axiomatizability forquasivarieties
Fundamenta Mathematicae, Tome 202 (2009) no. 3, pp. 199-223
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We define and compare
a selection of congruence properties of quasivarieties, including
the relative congruence meet semi-distributivity,
${\rm RSD}(\wedge)$, and the weak extension property,
${\rm WEP}$. We prove that if ${{{\cal K}}}\subseteq {{{\cal L}}}\subseteq
{{{\cal L}}}'$ are
quasivarieties of finite signature, and ${{{\cal L}}}'$ is finitely
generated while ${{{\cal K}}}\models {\rm WEP}$, then ${{{\cal K}}}$ is
finitely axiomatizable relative to ${{{\cal L}}}$. We prove for any
quasivariety ${{{\cal K}}}$ that ${{{\cal K}}}\models
{\rm RSD}(\wedge)$ iff
${{{\cal K}}}$ has pseudo-complemented congruence lattices and
${{{\cal K}}}\models {\rm WEP}$. Applying these results and other results
proved by M.~Maróti and R.~McKenzie [Studia Logica 78 (2004)] we
prove that a finitely generated quasivariety ${{{\cal L}}}$ of finite
signature is finitely axiomatizable provided that ${{{\cal L}}}$
satisfies ${\rm RSD}(\wedge)$, or that ${{{\cal L}}}$ is relatively
congruence modular and is included in a residually small
congruence modular variety. This yields as a corollary the full
version of R. Willard's theorem for quasivarieties and partially
proves a conjecture of D. Pigozzi. Finally, we provide a
quasi-Maltsev type characterization for ${\rm RSD}(\wedge)$
quasivarieties and supply an algorithm for recognizing when the
quasivariety generated by a finite set of finite algebras
satisfies ${\rm RSD}(\wedge)$.
Keywords:
define compare selection congruence properties quasivarieties including relative congruence meet semi distributivity rsd wedge weak extension property wep prove cal subseteq cal subseteq cal quasivarieties finite signature cal finitely generated while cal models wep cal finitely axiomatizable relative cal prove quasivariety cal cal models rsd wedge cal has pseudo complemented congruence lattices cal models wep applying these results other results proved mar mckenzie studia logica prove finitely generated quasivariety cal finite signature finitely axiomatizable provided cal satisfies rsd wedge cal relatively congruence modular included residually small congruence modular variety yields corollary full version willards theorem quasivarieties partially proves conjecture pigozzi finally provide quasi maltsev type characterization rsd wedge quasivarieties supply algorithm recognizing quasivariety generated finite set finite algebras satisfies rsd wedge
Affiliations des auteurs :
Wiesław Dziobiak 1 ; Miklós Maróti 2 ; Ralph McKenzie 3 ; Anvar Nurakunov 4
@article{10_4064_fm202_3_1,
author = {Wies{\l}aw Dziobiak and Mikl\'os Mar\'oti and Ralph McKenzie and Anvar Nurakunov},
title = {The weak extension property and finite axiomatizability forquasivarieties},
journal = {Fundamenta Mathematicae},
pages = {199--223},
publisher = {mathdoc},
volume = {202},
number = {3},
year = {2009},
doi = {10.4064/fm202-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-1/}
}
TY - JOUR AU - Wiesław Dziobiak AU - Miklós Maróti AU - Ralph McKenzie AU - Anvar Nurakunov TI - The weak extension property and finite axiomatizability forquasivarieties JO - Fundamenta Mathematicae PY - 2009 SP - 199 EP - 223 VL - 202 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-1/ DO - 10.4064/fm202-3-1 LA - en ID - 10_4064_fm202_3_1 ER -
%0 Journal Article %A Wiesław Dziobiak %A Miklós Maróti %A Ralph McKenzie %A Anvar Nurakunov %T The weak extension property and finite axiomatizability forquasivarieties %J Fundamenta Mathematicae %D 2009 %P 199-223 %V 202 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm202-3-1/ %R 10.4064/fm202-3-1 %G en %F 10_4064_fm202_3_1
Wiesław Dziobiak; Miklós Maróti; Ralph McKenzie; Anvar Nurakunov. The weak extension property and finite axiomatizability forquasivarieties. Fundamenta Mathematicae, Tome 202 (2009) no. 3, pp. 199-223. doi: 10.4064/fm202-3-1
Cité par Sources :