Indestructible colourings and rainbow Ramsey theorems
Fundamenta Mathematicae, Tome 202 (2009) no. 2, pp. 161-180.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that if a colouring $c$ establishes $\omega_2\nrightarrow [{(\omega_1:{\omega})}]^2$ then $c$ establishes this negative partition relation in each Cohen-generic extension of the ground model, i.e. this property of $c$ is Cohen-indestructible. This result yields a negative answer to a question of Erdős and Hajnal: it is consistent that GCH holds and there is a colouring $c:[{\omega_2}]^2\to 2$ establishing $\omega_2\nrightarrow [{(\omega_1:{\omega})}]_2$ such that some colouring $g:[\omega_1]^2\to 2$ does not embed into $c$.It is also consistent that $2^{\omega_1}$ is arbitrarily large, and there is a function $g$ establishing $2^{{\omega}_1}\nrightarrow [{(\omega_1,\omega_2)}]_{\omega_1};$ but there is no uncountable $g$-rainbow subset of $2^{{\omega}_1}$. We also show that if GCH holds then for each $k\in {\omega}$ there is a $k$-bounded colouring $f:[\omega_1]^2\rightarrow \omega_1$ and there are two c.c.c. posets ${\cal P}$ and ${\cal Q}$ such that $$ V^{{\cal P}}\models \hbox{$f$ c.c.c.-indestructibly establishes $\omega_1\nrightarrow^* [(\omega_1;\omega_1)]_{k\hbox{-}{\rm bdd}}$,} $$ but $$ V^{{\cal Q}}\models \hbox{$\omega_1$ is the union of countably many $f$-rainbow sets.} $$
DOI : 10.4064/fm202-2-4
Keywords: colouring establishes omega nrightarrow omega omega establishes negative partition relation each cohen generic extension ground model property cohen indestructible result yields negative answer question erd hajnal consistent gch holds there colouring omega establishing omega nrightarrow omega omega colouring omega does embed consistent omega arbitrarily large there function establishing omega nrightarrow omega omega omega there uncountable g rainbow subset omega gch holds each omega there k bounded colouring omega rightarrow omega there posets cal cal cal models hbox c indestructibly establishes omega nrightarrow * omega omega hbox bdd cal models hbox omega union countably many f rainbow sets

Lajos Soukup 1

1 Alfréd Rényi Institute of Mathematics V. Reáltanoda utca 13-15 H-1053 Budapest, Hungary
@article{10_4064_fm202_2_4,
     author = {Lajos Soukup},
     title = {Indestructible colourings and rainbow {Ramsey} theorems},
     journal = {Fundamenta Mathematicae},
     pages = {161--180},
     publisher = {mathdoc},
     volume = {202},
     number = {2},
     year = {2009},
     doi = {10.4064/fm202-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm202-2-4/}
}
TY  - JOUR
AU  - Lajos Soukup
TI  - Indestructible colourings and rainbow Ramsey theorems
JO  - Fundamenta Mathematicae
PY  - 2009
SP  - 161
EP  - 180
VL  - 202
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm202-2-4/
DO  - 10.4064/fm202-2-4
LA  - en
ID  - 10_4064_fm202_2_4
ER  - 
%0 Journal Article
%A Lajos Soukup
%T Indestructible colourings and rainbow Ramsey theorems
%J Fundamenta Mathematicae
%D 2009
%P 161-180
%V 202
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm202-2-4/
%R 10.4064/fm202-2-4
%G en
%F 10_4064_fm202_2_4
Lajos Soukup. Indestructible colourings and rainbow Ramsey theorems. Fundamenta Mathematicae, Tome 202 (2009) no. 2, pp. 161-180. doi : 10.4064/fm202-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm202-2-4/

Cité par Sources :