Commuting involutions whose fixed point set consists of two special components
Fundamenta Mathematicae, Tome 201 (2008) no. 3, pp. 241-259.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $F^n$ be a connected, smooth and closed $n$-dimensional manifold. We call $F^n$ a manifold with property $\mathcal{H}$ when it has the following property: if $N^m$ is any smooth closed $m$-dimensional manifold with $m>n$ and $T:N^m \to N^m$ is a smooth involution whose fixed point set is $F^n$, then $m=2n$. Examples of manifolds with this property are: the real, complex and quaternionic even-dimensional projective spaces $RP^{2n}$, $CP^{2n}$ and $HP^{2n}$, and the connected sum of $RP^{2n}$ and any number of copies of $S^n \times S^n$, where $S^n$ is the $n$-sphere and $n$ is not a power of $2$. In this paper we describe the equivariant cobordism classification of smooth actions $(M^m; {\mit\Phi})$ of the group $Z_2^k$ on closed smooth $m$-dimensional manifolds $M^m$ for which the fixed point set of the action consists of two components $K$ and $L$ with property $\mathcal{H}$, and where ${\rm dim}(K) {\rm dim}(L)$. The description is given in terms of the set of equivariant cobordism classes of involutions fixing $K \cup L$.
DOI : 10.4064/fm201-3-3
Keywords: connected smooth closed n dimensional manifold call manifold property mathcal has following property smooth closed m dimensional manifold smooth involution whose fixed point set examples manifolds property real complex quaternionic even dimensional projective spaces connected sum number copies times where n sphere power paper describe equivariant cobordism classification smooth actions mit phi group closed smooth m dimensional manifolds which fixed point set action consists components property mathcal where dim dim description given terms set equivariant cobordism classes involutions fixing cup

Pedro L. Q. Pergher 1 ; Rogério de Oliveira 2

1 Departamento de Matemática Universidade Federal de São Carlos Caixa Postal 676 São Carlos, SP 13565-905, Brazil
2 Departamento de Ciências Exatas Universidade Federal de Mato Grosso do Sul Caixa Postal 210 Três Lagoas, MS 79603-011, Brazil
@article{10_4064_fm201_3_3,
     author = {Pedro L. Q. Pergher and Rog\'erio de Oliveira},
     title = {Commuting involutions whose fixed point set
consists of two special components},
     journal = {Fundamenta Mathematicae},
     pages = {241--259},
     publisher = {mathdoc},
     volume = {201},
     number = {3},
     year = {2008},
     doi = {10.4064/fm201-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm201-3-3/}
}
TY  - JOUR
AU  - Pedro L. Q. Pergher
AU  - Rogério de Oliveira
TI  - Commuting involutions whose fixed point set
consists of two special components
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 241
EP  - 259
VL  - 201
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm201-3-3/
DO  - 10.4064/fm201-3-3
LA  - en
ID  - 10_4064_fm201_3_3
ER  - 
%0 Journal Article
%A Pedro L. Q. Pergher
%A Rogério de Oliveira
%T Commuting involutions whose fixed point set
consists of two special components
%J Fundamenta Mathematicae
%D 2008
%P 241-259
%V 201
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm201-3-3/
%R 10.4064/fm201-3-3
%G en
%F 10_4064_fm201_3_3
Pedro L. Q. Pergher; Rogério de Oliveira. Commuting involutions whose fixed point set
consists of two special components. Fundamenta Mathematicae, Tome 201 (2008) no. 3, pp. 241-259. doi : 10.4064/fm201-3-3. http://geodesic.mathdoc.fr/articles/10.4064/fm201-3-3/

Cité par Sources :