The elementary-equivalence classes of clopen algebras of $P$-spaces
Fundamenta Mathematicae, Tome 201 (2008) no. 2, pp. 149-161.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Two Boolean algebras are elementarily equivalent if and only if they satisfy the same first-order statements in the language of Boolean algebras. We prove that every Boolean algebra is elementarily equivalent to the algebra of clopen subsets of a normal $P$-space.
DOI : 10.4064/fm201-2-4
Keywords: boolean algebras elementarily equivalent only satisfy first order statements language boolean algebras prove every boolean algebra elementarily equivalent algebra clopen subsets normal p space

Brian Wynne 1

1 Bard College at Simon's Rock Box #143 84 Alford Road Great Barrington, MA 01230-1978, U.S.A.
@article{10_4064_fm201_2_4,
     author = {Brian Wynne},
     title = {The elementary-equivalence classes of clopen algebras
 of $P$-spaces},
     journal = {Fundamenta Mathematicae},
     pages = {149--161},
     publisher = {mathdoc},
     volume = {201},
     number = {2},
     year = {2008},
     doi = {10.4064/fm201-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-4/}
}
TY  - JOUR
AU  - Brian Wynne
TI  - The elementary-equivalence classes of clopen algebras
 of $P$-spaces
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 149
EP  - 161
VL  - 201
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-4/
DO  - 10.4064/fm201-2-4
LA  - en
ID  - 10_4064_fm201_2_4
ER  - 
%0 Journal Article
%A Brian Wynne
%T The elementary-equivalence classes of clopen algebras
 of $P$-spaces
%J Fundamenta Mathematicae
%D 2008
%P 149-161
%V 201
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-4/
%R 10.4064/fm201-2-4
%G en
%F 10_4064_fm201_2_4
Brian Wynne. The elementary-equivalence classes of clopen algebras
 of $P$-spaces. Fundamenta Mathematicae, Tome 201 (2008) no. 2, pp. 149-161. doi : 10.4064/fm201-2-4. http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-4/

Cité par Sources :