Intrinsic linking and knotting are arbitrarily complex
Fundamenta Mathematicae, Tome 201 (2008) no. 2, pp. 131-148
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that,
given any $n$ and $\alpha$,
any embedding of any sufficiently large complete graph in $\mathbb{R}^3$
contains
an oriented link with components $Q_1, \ldots, Q_n$
such that for every $i\not =j$, $|{\rm lk}(Q_i,Q_j)|\geq\alpha$
and $|a_2(Q_i)|\geq\alpha$, where $a_{2}(Q_i)$
denotes the second coefficient
of the Conway polynomial of $Q_i$.
Keywords:
given alpha embedding sufficiently large complete graph mathbb contains oriented link components ldots every j geq alpha geq alpha where denotes second coefficient conway polynomial
Affiliations des auteurs :
Erica Flapan 1 ; Blake Mellor 2 ; Ramin Naimi 3
@article{10_4064_fm201_2_3,
author = {Erica Flapan and Blake Mellor and Ramin Naimi},
title = {Intrinsic linking and knotting are arbitrarily complex},
journal = {Fundamenta Mathematicae},
pages = {131--148},
publisher = {mathdoc},
volume = {201},
number = {2},
year = {2008},
doi = {10.4064/fm201-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-3/}
}
TY - JOUR AU - Erica Flapan AU - Blake Mellor AU - Ramin Naimi TI - Intrinsic linking and knotting are arbitrarily complex JO - Fundamenta Mathematicae PY - 2008 SP - 131 EP - 148 VL - 201 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-3/ DO - 10.4064/fm201-2-3 LA - en ID - 10_4064_fm201_2_3 ER -
Erica Flapan; Blake Mellor; Ramin Naimi. Intrinsic linking and knotting are arbitrarily complex. Fundamenta Mathematicae, Tome 201 (2008) no. 2, pp. 131-148. doi: 10.4064/fm201-2-3
Cité par Sources :