Intrinsic linking and knotting are arbitrarily complex
Fundamenta Mathematicae, Tome 201 (2008) no. 2, pp. 131-148.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that, given any $n$ and $\alpha$, any embedding of any sufficiently large complete graph in $\mathbb{R}^3$ contains an oriented link with components $Q_1, \ldots, Q_n$ such that for every $i\not =j$, $|{\rm lk}(Q_i,Q_j)|\geq\alpha$ and $|a_2(Q_i)|\geq\alpha$, where $a_{2}(Q_i)$ denotes the second coefficient of the Conway polynomial of $Q_i$.
DOI : 10.4064/fm201-2-3
Keywords: given alpha embedding sufficiently large complete graph mathbb contains oriented link components ldots every j geq alpha geq alpha where denotes second coefficient conway polynomial

Erica Flapan 1 ; Blake Mellor 2 ; Ramin Naimi 3

1 Department of Mathematics Pomona College Claremont, CA 91711, U.S.A.
2 Department of Mathematics Loyola Marymount University Los Angeles, CA 90045, U.S.A.
3 Department of Mathematics Occidental College Los Angeles, CA 90041, U.S.A.
@article{10_4064_fm201_2_3,
     author = {Erica Flapan and Blake Mellor and Ramin Naimi},
     title = {Intrinsic linking and knotting are arbitrarily complex},
     journal = {Fundamenta Mathematicae},
     pages = {131--148},
     publisher = {mathdoc},
     volume = {201},
     number = {2},
     year = {2008},
     doi = {10.4064/fm201-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-3/}
}
TY  - JOUR
AU  - Erica Flapan
AU  - Blake Mellor
AU  - Ramin Naimi
TI  - Intrinsic linking and knotting are arbitrarily complex
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 131
EP  - 148
VL  - 201
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-3/
DO  - 10.4064/fm201-2-3
LA  - en
ID  - 10_4064_fm201_2_3
ER  - 
%0 Journal Article
%A Erica Flapan
%A Blake Mellor
%A Ramin Naimi
%T Intrinsic linking and knotting are arbitrarily complex
%J Fundamenta Mathematicae
%D 2008
%P 131-148
%V 201
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-3/
%R 10.4064/fm201-2-3
%G en
%F 10_4064_fm201_2_3
Erica Flapan; Blake Mellor; Ramin Naimi. Intrinsic linking and knotting are arbitrarily complex. Fundamenta Mathematicae, Tome 201 (2008) no. 2, pp. 131-148. doi : 10.4064/fm201-2-3. http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-3/

Cité par Sources :