Embedding tiling spaces in surfaces
Fundamenta Mathematicae, Tome 201 (2008) no. 2, pp. 99-113.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that an aperiodic minimal tiling space with only finitely many asymptotic composants embeds in a surface if and only if it is the suspension of a symbolic interval exchange transformation (possibly with reversals). We give two necessary conditions for an aperiodic primitive substitution tiling space to embed in a surface. In the case of substitutions on two symbols our classification is nearly complete. The results characterize the codimension one hyperbolic attractors of surface diffeomorphisms in terms of asymptotic composants of substitutions.
DOI : 10.4064/fm201-2-1
Keywords: aperiodic minimal tiling space only finitely many asymptotic composants embeds surface only suspension symbolic interval exchange transformation possibly reversals necessary conditions aperiodic primitive substitution tiling space embed surface substitutions symbols classification nearly complete results characterize codimension hyperbolic attractors surface diffeomorphisms terms asymptotic composants substitutions

Charles Holton 1 ; Brian F. Martensen 2

1 Department of Mathematics The University of Texas at Austin 1 University Station//C1200 Austin, TX 78712, U.S.A.
2 Minnesota State University Wissink 273 Mankato, MN 56001, U.S.A.
@article{10_4064_fm201_2_1,
     author = {Charles Holton and Brian F. Martensen},
     title = {Embedding tiling spaces in surfaces},
     journal = {Fundamenta Mathematicae},
     pages = {99--113},
     publisher = {mathdoc},
     volume = {201},
     number = {2},
     year = {2008},
     doi = {10.4064/fm201-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-1/}
}
TY  - JOUR
AU  - Charles Holton
AU  - Brian F. Martensen
TI  - Embedding tiling spaces in surfaces
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 99
EP  - 113
VL  - 201
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-1/
DO  - 10.4064/fm201-2-1
LA  - en
ID  - 10_4064_fm201_2_1
ER  - 
%0 Journal Article
%A Charles Holton
%A Brian F. Martensen
%T Embedding tiling spaces in surfaces
%J Fundamenta Mathematicae
%D 2008
%P 99-113
%V 201
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-1/
%R 10.4064/fm201-2-1
%G en
%F 10_4064_fm201_2_1
Charles Holton; Brian F. Martensen. Embedding tiling spaces in surfaces. Fundamenta Mathematicae, Tome 201 (2008) no. 2, pp. 99-113. doi : 10.4064/fm201-2-1. http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-1/

Cité par Sources :