Embedding tiling spaces in surfaces
Fundamenta Mathematicae, Tome 201 (2008) no. 2, pp. 99-113
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that an aperiodic minimal tiling space with only finitely many asymptotic composants embeds in a surface if and only if it is the suspension of a symbolic interval exchange transformation (possibly with reversals). We give two necessary conditions for an aperiodic primitive substitution tiling space to embed in a surface. In the case of substitutions on two symbols our classification is nearly complete. The results characterize the codimension one hyperbolic attractors of surface diffeomorphisms in terms of asymptotic composants of substitutions.
Keywords:
aperiodic minimal tiling space only finitely many asymptotic composants embeds surface only suspension symbolic interval exchange transformation possibly reversals necessary conditions aperiodic primitive substitution tiling space embed surface substitutions symbols classification nearly complete results characterize codimension hyperbolic attractors surface diffeomorphisms terms asymptotic composants substitutions
Affiliations des auteurs :
Charles Holton 1 ; Brian F. Martensen 2
@article{10_4064_fm201_2_1,
author = {Charles Holton and Brian F. Martensen},
title = {Embedding tiling spaces in surfaces},
journal = {Fundamenta Mathematicae},
pages = {99--113},
publisher = {mathdoc},
volume = {201},
number = {2},
year = {2008},
doi = {10.4064/fm201-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm201-2-1/}
}
Charles Holton; Brian F. Martensen. Embedding tiling spaces in surfaces. Fundamenta Mathematicae, Tome 201 (2008) no. 2, pp. 99-113. doi: 10.4064/fm201-2-1
Cité par Sources :