New algebras of functions on topological groups arising from
$G$-spaces
Fundamenta Mathematicae, Tome 201 (2008) no. 1, pp. 1-51
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a topological group $G$ we introduce the algebra $SUC(G)$ of
strongly uniformly continuous functions. We show that
$SUC(G)$ contains the algebra $WAP(G)$ of weakly almost periodic
functions as well as the algebras $LE(G)$ and Asp$(G)$ of locally
equicontinuous and Asplund functions respectively. For the Polish
groups of order preserving homeomorphisms of the unit interval and
of isometries of the Urysohn space of diameter 1, we show that
$SUC(G)$ is trivial. We introduce the notion of fixed point on a
class~P of flows (${\rm P}$-${\rm fpp}$) and study in particular groups with
the SUC-fpp.
We study the Roelcke algebra (= $UC(G)$ = right and left
uniformly continuous functions) and SUC compactifications of the
groups $S({\mathbb N})$, of permutations of a countable set, and $H(C)$,
of homeomorphisms of the Cantor set. For the first group we
show that $WAP(G)=SUC(G)=UC(G)$ and also provide a concrete
description of the corresponding metrizable (in fact Cantor)
semitopological semigroup compactification. For the second group,
in contrast, we show that $SUC(G)$ is properly contained in $UC(G)$.
We then deduce that for this group $UC(G)$ does not yield a right
topological semigroup compactification.
Keywords:
topological group introduce algebra suc strongly uniformly continuous functions suc contains algebra wap weakly almost periodic functions algebras asp locally equicontinuous asplund functions respectively polish groups order preserving homeomorphisms unit interval isometries urysohn space diameter suc trivial introduce notion fixed point class flows fpp study particular groups suc fpp study roelcke algebra right uniformly continuous functions suc compactifications groups mathbb permutations countable set homeomorphisms cantor set first group wap suc provide concrete description corresponding metrizable cantor semitopological semigroup compactification second group contrast suc properly contained deduce group does yield right topological semigroup compactification
Affiliations des auteurs :
E. Glasner 1 ; M. Megrelishvili 2
@article{10_4064_fm201_1_1,
author = {E. Glasner and M. Megrelishvili},
title = {New algebras of functions on topological groups arising from
$G$-spaces},
journal = {Fundamenta Mathematicae},
pages = {1--51},
publisher = {mathdoc},
volume = {201},
number = {1},
year = {2008},
doi = {10.4064/fm201-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm201-1-1/}
}
TY - JOUR AU - E. Glasner AU - M. Megrelishvili TI - New algebras of functions on topological groups arising from $G$-spaces JO - Fundamenta Mathematicae PY - 2008 SP - 1 EP - 51 VL - 201 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm201-1-1/ DO - 10.4064/fm201-1-1 LA - en ID - 10_4064_fm201_1_1 ER -
E. Glasner; M. Megrelishvili. New algebras of functions on topological groups arising from $G$-spaces. Fundamenta Mathematicae, Tome 201 (2008) no. 1, pp. 1-51. doi: 10.4064/fm201-1-1
Cité par Sources :