The monoid of suspensions and loops modulo Bousfield equivalence
Fundamenta Mathematicae, Tome 199 (2008) no. 3, pp. 213-226.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The suspension and loop space functors, $\mit\Sigma$ and $\mit\Omega$, operate on the lattice of Bousfield classes of (sufficiently highly connected) topological spaces, and therefore generate a submonoid ${\mathcal L}$ of the complete set of operations on the Bousfield lattice. We determine the structure of ${\mathcal L}$ in terms of a single parameter of homotopy theory which is closely tied to the problem of desuspending weak cellular inequalities.
DOI : 10.4064/fm199-3-2
Keywords: suspension loop space functors mit sigma mit omega operate lattice bousfield classes sufficiently highly connected topological spaces therefore generate submonoid mathcal complete set operations bousfield lattice determine structure mathcal terms single parameter homotopy theory which closely tied problem desuspending weak cellular inequalities

Jeff Strom 1

1 Department of Mathematics Western Michigan University 1903 W. Michigan Ave. Kalamazoo, MI 49008, U.S.A.
@article{10_4064_fm199_3_2,
     author = {Jeff Strom},
     title = {The monoid of suspensions and loops modulo {Bousfield} equivalence},
     journal = {Fundamenta Mathematicae},
     pages = {213--226},
     publisher = {mathdoc},
     volume = {199},
     number = {3},
     year = {2008},
     doi = {10.4064/fm199-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm199-3-2/}
}
TY  - JOUR
AU  - Jeff Strom
TI  - The monoid of suspensions and loops modulo Bousfield equivalence
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 213
EP  - 226
VL  - 199
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm199-3-2/
DO  - 10.4064/fm199-3-2
LA  - en
ID  - 10_4064_fm199_3_2
ER  - 
%0 Journal Article
%A Jeff Strom
%T The monoid of suspensions and loops modulo Bousfield equivalence
%J Fundamenta Mathematicae
%D 2008
%P 213-226
%V 199
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm199-3-2/
%R 10.4064/fm199-3-2
%G en
%F 10_4064_fm199_3_2
Jeff Strom. The monoid of suspensions and loops modulo Bousfield equivalence. Fundamenta Mathematicae, Tome 199 (2008) no. 3, pp. 213-226. doi : 10.4064/fm199-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm199-3-2/

Cité par Sources :