The monoid of suspensions and loops modulo Bousfield equivalence
Fundamenta Mathematicae, Tome 199 (2008) no. 3, pp. 213-226
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The suspension and loop space functors, $\mit\Sigma$ and $\mit\Omega$,
operate on the lattice of Bousfield classes of (sufficiently
highly connected) topological spaces,
and therefore generate a submonoid ${\mathcal L}$ of the complete
set of operations on the Bousfield lattice.
We determine the structure of ${\mathcal L}$
in terms of a single parameter of homotopy theory which is
closely tied to the problem of desuspending weak
cellular inequalities.
Keywords:
suspension loop space functors mit sigma mit omega operate lattice bousfield classes sufficiently highly connected topological spaces therefore generate submonoid mathcal complete set operations bousfield lattice determine structure mathcal terms single parameter homotopy theory which closely tied problem desuspending weak cellular inequalities
Affiliations des auteurs :
Jeff Strom 1
@article{10_4064_fm199_3_2,
author = {Jeff Strom},
title = {The monoid of suspensions and loops modulo {Bousfield} equivalence},
journal = {Fundamenta Mathematicae},
pages = {213--226},
publisher = {mathdoc},
volume = {199},
number = {3},
year = {2008},
doi = {10.4064/fm199-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm199-3-2/}
}
TY - JOUR AU - Jeff Strom TI - The monoid of suspensions and loops modulo Bousfield equivalence JO - Fundamenta Mathematicae PY - 2008 SP - 213 EP - 226 VL - 199 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm199-3-2/ DO - 10.4064/fm199-3-2 LA - en ID - 10_4064_fm199_3_2 ER -
Jeff Strom. The monoid of suspensions and loops modulo Bousfield equivalence. Fundamenta Mathematicae, Tome 199 (2008) no. 3, pp. 213-226. doi: 10.4064/fm199-3-2
Cité par Sources :