Whitney arcs and 1-critical arcs
Fundamenta Mathematicae, Tome 199 (2008) no. 2, pp. 119-130.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A simple arc $\gamma \subset \mathbb R^n$ is called a Whitney arc if there exists a non-constant real function $f$ on $\gamma$ such that $\lim_{y\to x,\, y\in \gamma}{{|f(y)-f(x) |}/{|y-x|}}=0$ for every $ x\in \gamma$; $\gamma$ is $1$-critical if there exists an $f \in C^1(\mathbb R^n)$ such that $f'(x)=0$ for every $x \in \gamma$ and $f$ is not constant on $\gamma$. We show that the two notions are equivalent if $\gamma$ is a quasiarc, but for general simple arcs the Whitney property is weaker. Our example also gives an arc $\gamma$ in $\mathbb R^2$ each of whose subarcs is a monotone Whitney arc, but which is not a strictly monotone Whitney arc. This answers completely a problem of G. Petruska which was solved for $n\geq 3$ by the first author in 1999.
DOI : 10.4064/fm199-2-2
Keywords: simple arc gamma subset mathbb called whitney arc there exists non constant real function gamma lim gamma f y x every gamma gamma critical there exists mathbb every gamma constant gamma notions equivalent gamma quasiarc general simple arcs whitney property weaker example gives arc gamma mathbb each whose subarcs monotone whitney arc which strictly monotone whitney arc answers completely problem petruska which solved geq first author

Marianna Csörnyei 1 ; Jan Kališ 2 ; Luděk Zajíček 3

1 Department of Mathematics University College London Gower Street, London WC1E 6BT, United Kingdom
2 Department of Mathematical Sciences Florida Atlantic University 777 Glades Road Boca Raton, FL 33431, U.S.A.
3 Department of Mathematical Analysis Charles University Sokolovská 83 186 75 Praha 8, Czech Republic
@article{10_4064_fm199_2_2,
     author = {Marianna Cs\"ornyei and Jan Kali\v{s} and Lud\v{e}k Zaj{\'\i}\v{c}ek},
     title = {Whitney arcs and 1-critical arcs},
     journal = {Fundamenta Mathematicae},
     pages = {119--130},
     publisher = {mathdoc},
     volume = {199},
     number = {2},
     year = {2008},
     doi = {10.4064/fm199-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm199-2-2/}
}
TY  - JOUR
AU  - Marianna Csörnyei
AU  - Jan Kališ
AU  - Luděk Zajíček
TI  - Whitney arcs and 1-critical arcs
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 119
EP  - 130
VL  - 199
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm199-2-2/
DO  - 10.4064/fm199-2-2
LA  - en
ID  - 10_4064_fm199_2_2
ER  - 
%0 Journal Article
%A Marianna Csörnyei
%A Jan Kališ
%A Luděk Zajíček
%T Whitney arcs and 1-critical arcs
%J Fundamenta Mathematicae
%D 2008
%P 119-130
%V 199
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm199-2-2/
%R 10.4064/fm199-2-2
%G en
%F 10_4064_fm199_2_2
Marianna Csörnyei; Jan Kališ; Luděk Zajíček. Whitney arcs and 1-critical arcs. Fundamenta Mathematicae, Tome 199 (2008) no. 2, pp. 119-130. doi : 10.4064/fm199-2-2. http://geodesic.mathdoc.fr/articles/10.4064/fm199-2-2/

Cité par Sources :