Whitney arcs and 1-critical arcs
Fundamenta Mathematicae, Tome 199 (2008) no. 2, pp. 119-130
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A simple arc $\gamma \subset \mathbb R^n$ is called a Whitney arc if
there exists a non-constant real function $f$ on $\gamma$ such that
$\lim_{y\to x,\, y\in \gamma}{{|f(y)-f(x) |}/{|y-x|}}=0$ for every $
x\in \gamma$; $\gamma$ is $1$-critical if there exists an $f \in
C^1(\mathbb R^n)$ such that $f'(x)=0$ for every $x \in \gamma$ and $f$ is not
constant on $\gamma$. We show that the two notions are equivalent if
$\gamma$ is a quasiarc, but for general simple arcs the Whitney property
is weaker. Our example also gives an arc $\gamma$ in $\mathbb R^2$ each
of whose subarcs is a monotone Whitney arc, but which is not a strictly monotone Whitney
arc. This answers completely a problem of G. Petruska which was solved
for $n\geq 3$ by the first author in 1999.
Keywords:
simple arc gamma subset mathbb called whitney arc there exists non constant real function gamma lim gamma f y x every gamma gamma critical there exists mathbb every gamma constant gamma notions equivalent gamma quasiarc general simple arcs whitney property weaker example gives arc gamma mathbb each whose subarcs monotone whitney arc which strictly monotone whitney arc answers completely problem petruska which solved geq first author
Affiliations des auteurs :
Marianna Csörnyei 1 ; Jan Kališ 2 ; Luděk Zajíček 3
@article{10_4064_fm199_2_2,
author = {Marianna Cs\"ornyei and Jan Kali\v{s} and Lud\v{e}k Zaj{\'\i}\v{c}ek},
title = {Whitney arcs and 1-critical arcs},
journal = {Fundamenta Mathematicae},
pages = {119--130},
publisher = {mathdoc},
volume = {199},
number = {2},
year = {2008},
doi = {10.4064/fm199-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm199-2-2/}
}
TY - JOUR AU - Marianna Csörnyei AU - Jan Kališ AU - Luděk Zajíček TI - Whitney arcs and 1-critical arcs JO - Fundamenta Mathematicae PY - 2008 SP - 119 EP - 130 VL - 199 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm199-2-2/ DO - 10.4064/fm199-2-2 LA - en ID - 10_4064_fm199_2_2 ER -
Marianna Csörnyei; Jan Kališ; Luděk Zajíček. Whitney arcs and 1-critical arcs. Fundamenta Mathematicae, Tome 199 (2008) no. 2, pp. 119-130. doi: 10.4064/fm199-2-2
Cité par Sources :