Free trees and the optimal bound in Wehrung's theorem
Fundamenta Mathematicae, Tome 198 (2008) no. 3, pp. 217-228.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that there is a distributive $(\vee,0,1)$-semilattice $\mathcal{G}$ of size $\aleph_2$ such that there is no weakly distributive $(\vee,0)$-homomorphism from $\mathop{\rm Con}_c A$ to $\mathcal{G}$ with $1$ in its range, for any algebra $A$ with either a congruence-compatible structure of a $(\vee,1)$-semi-lattice or a congruence-compatible structure of a lattice. In particular, $\mathcal{G}$ is not isomorphic to the $(\vee,0)$-semilattice of compact congruences of any lattice. This improves Wehrung's solution of Dilworth's Congruence Lattice Problem, by giving the best cardinality bound possible. The main ingredient of our proof is the modification of Kuratowski's Free Set Theorem, which involves what we call free trees.
DOI : 10.4064/fm198-3-2
Mots-clés : prove there distributive vee semilattice mathcal size aleph there weakly distributive vee homomorphism mathop con mathcal its range algebra either congruence compatible structure vee semi lattice congruence compatible structure lattice particular mathcal isomorphic vee semilattice compact congruences lattice improves wehrungs solution dilworths congruence lattice problem giving best cardinality bound possible main ingredient proof modification kuratowskis set theorem which involves what call trees

Pavel Růžička 1

1 Department of Algebra Faculty of Mathematics and Physics Charles University Sokolovská 83 186 75 Praha 8, Czech Republic
@article{10_4064_fm198_3_2,
     author = {Pavel R\r{u}\v{z}i\v{c}ka},
     title = {Free trees and the optimal bound in {Wehrung's} theorem},
     journal = {Fundamenta Mathematicae},
     pages = {217--228},
     publisher = {mathdoc},
     volume = {198},
     number = {3},
     year = {2008},
     doi = {10.4064/fm198-3-2},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm198-3-2/}
}
TY  - JOUR
AU  - Pavel Růžička
TI  - Free trees and the optimal bound in Wehrung's theorem
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 217
EP  - 228
VL  - 198
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm198-3-2/
DO  - 10.4064/fm198-3-2
LA  - de
ID  - 10_4064_fm198_3_2
ER  - 
%0 Journal Article
%A Pavel Růžička
%T Free trees and the optimal bound in Wehrung's theorem
%J Fundamenta Mathematicae
%D 2008
%P 217-228
%V 198
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm198-3-2/
%R 10.4064/fm198-3-2
%G de
%F 10_4064_fm198_3_2
Pavel Růžička. Free trees and the optimal bound in Wehrung's theorem. Fundamenta Mathematicae, Tome 198 (2008) no. 3, pp. 217-228. doi : 10.4064/fm198-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm198-3-2/

Cité par Sources :