The Morse minimal system is finitarily
Kakutani equivalent to the binary odometer
Fundamenta Mathematicae, Tome 198 (2008) no. 2, pp. 149-163
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Two invertible dynamical systems $(X, {\mathfrak F} {A}, \mu, T)$ and $(Y, {\mathfrak F}
{B}, \nu, S)$, where $X$ and $Y$ are Polish spaces and Borel
probability spaces and $T$, $S$ are measure preserving
homeomorphisms of $X$ and $Y$, are said to be finitarily orbit
equivalent if there exists an invertible measure preserving mapping
$\phi$ from a subset $X_0$ of $X$ of measure one onto a subset
$Y_0$ of $Y$ of full measure such that
(1) $\phi|_{X_0}$ is continuous in the relative topology on $X_0$ and
$\phi^{-1}|_{Y_0}$ is continuous in the relative topology on $Y_0$,
(2) $\phi({\rm Orb}_T(x))={\rm Orb}_S(\phi(x))$ for $\mu$-a.e. $x\in
X$.$(X, {\mathfrak F} {A}, \mu, T)$ and $(Y, {\mathfrak F} {B}, \nu, S)$ are said to be
finitarily evenly Kakutani equivalent if they are finitarily orbit
equivalent by a mapping $\phi$ for which there are measurable
subsets $A$ of $X$ and $B=\phi(A)$ of $Y$ with $\phi$
an isomorphism of $T_A$ and $T_B$.It is shown here that the Morse minimal system and the binary
odometer are finitarily evenly Kakutani equivalent.
Keywords:
invertible dynamical systems mathfrak mathfrak where polish spaces borel probability spaces measure preserving homeomorphisms said finitarily orbit equivalent there exists invertible measure preserving mapping phi subset measure subset full measure phi continuous relative topology phi continuous relative topology phi orb orb phi mu a mathfrak mathfrak said finitarily evenly kakutani equivalent finitarily orbit equivalent mapping phi which there measurable subsets phi phi isomorphism nbsp shown here morse minimal system binary odometer finitarily evenly kakutani equivalent
Affiliations des auteurs :
Mrinal Kanti Roychowdhury 1 ; Daniel J. Rudolph 2
@article{10_4064_fm198_2_5,
author = {Mrinal Kanti Roychowdhury and Daniel J. Rudolph},
title = {The {Morse} minimal system is {finitarily
Kakutani} equivalent to the binary odometer},
journal = {Fundamenta Mathematicae},
pages = {149--163},
publisher = {mathdoc},
volume = {198},
number = {2},
year = {2008},
doi = {10.4064/fm198-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm198-2-5/}
}
TY - JOUR AU - Mrinal Kanti Roychowdhury AU - Daniel J. Rudolph TI - The Morse minimal system is finitarily Kakutani equivalent to the binary odometer JO - Fundamenta Mathematicae PY - 2008 SP - 149 EP - 163 VL - 198 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm198-2-5/ DO - 10.4064/fm198-2-5 LA - en ID - 10_4064_fm198_2_5 ER -
%0 Journal Article %A Mrinal Kanti Roychowdhury %A Daniel J. Rudolph %T The Morse minimal system is finitarily Kakutani equivalent to the binary odometer %J Fundamenta Mathematicae %D 2008 %P 149-163 %V 198 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm198-2-5/ %R 10.4064/fm198-2-5 %G en %F 10_4064_fm198_2_5
Mrinal Kanti Roychowdhury; Daniel J. Rudolph. The Morse minimal system is finitarily Kakutani equivalent to the binary odometer. Fundamenta Mathematicae, Tome 198 (2008) no. 2, pp. 149-163. doi: 10.4064/fm198-2-5
Cité par Sources :