Hurewicz–Serre theorem in extension theory
Fundamenta Mathematicae, Tome 198 (2008) no. 2, pp. 113-123
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The paper is devoted to generalizations of
the Cencelj–Dranishnikov theorems
relating extension properties of nilpotent CW complexes to their homology
groups.
Here are the main results of the paper:Theorem 0.1.
Let $L$ be a nilpotent CW complex and $F$
the homotopy fiber of the inclusion $i$ of $L$ into
its infinite symmetric product $SP(L)$.
If $X$ is a metrizable space such that $X\tau K(H_k(L),k)$ for all $k\ge 1$,
then $X\tau K(\pi_k(F),k)$ and $X\tau K(\pi_k(L),k)$ for all $k\ge 2$.
Theorem 0.2.
Let $X$ be a metrizable space such that ${\mathop{\rm dim}}(X) \infty$ or $X\in ANR$.
Suppose $L$ is a nilpotent CW complex.
If $X\tau SP(L)$,
then $X\tau L$ in the following cases$:$
(a) $H_1(L)$ is finitely generated.(b) $H_1(L)$ is a torsion group.
Keywords:
paper devoted generalizations cencelj dranishnikov theorems relating extension properties nilpotent complexes their homology groups here main results paper theorem nilpotent complex homotopy fiber inclusion its infinite symmetric product metrizable space tau l tau tau theorem metrizable space mathop dim infty anr suppose nilpotent complex tau tau following cases finitely generated torsion group
Affiliations des auteurs :
M. Cencelj 1 ; J. Dydak 2 ; A. Mitra 2 ; A. Vavpetič 3
@article{10_4064_fm198_2_2,
author = {M. Cencelj and J. Dydak and A. Mitra and A. Vavpeti\v{c}},
title = {Hurewicz{\textendash}Serre theorem in extension theory},
journal = {Fundamenta Mathematicae},
pages = {113--123},
publisher = {mathdoc},
volume = {198},
number = {2},
year = {2008},
doi = {10.4064/fm198-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm198-2-2/}
}
TY - JOUR AU - M. Cencelj AU - J. Dydak AU - A. Mitra AU - A. Vavpetič TI - Hurewicz–Serre theorem in extension theory JO - Fundamenta Mathematicae PY - 2008 SP - 113 EP - 123 VL - 198 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm198-2-2/ DO - 10.4064/fm198-2-2 LA - en ID - 10_4064_fm198_2_2 ER -
M. Cencelj; J. Dydak; A. Mitra; A. Vavpetič. Hurewicz–Serre theorem in extension theory. Fundamenta Mathematicae, Tome 198 (2008) no. 2, pp. 113-123. doi: 10.4064/fm198-2-2
Cité par Sources :