Hurewicz–Serre theorem in extension theory
Fundamenta Mathematicae, Tome 198 (2008) no. 2, pp. 113-123.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The paper is devoted to generalizations of the Cencelj–Dranishnikov theorems relating extension properties of nilpotent CW complexes to their homology groups. Here are the main results of the paper:Theorem 0.1. Let $L$ be a nilpotent CW complex and $F$ the homotopy fiber of the inclusion $i$ of $L$ into its infinite symmetric product $SP(L)$. If $X$ is a metrizable space such that $X\tau K(H_k(L),k)$ for all $k\ge 1$, then $X\tau K(\pi_k(F),k)$ and $X\tau K(\pi_k(L),k)$ for all $k\ge 2$. Theorem 0.2. Let $X$ be a metrizable space such that ${\mathop{\rm dim}}(X) \infty$ or $X\in ANR$. Suppose $L$ is a nilpotent CW complex. If $X\tau SP(L)$, then $X\tau L$ in the following cases$:$ (a) $H_1(L)$ is finitely generated.(b) $H_1(L)$ is a torsion group.
DOI : 10.4064/fm198-2-2
Keywords: paper devoted generalizations cencelj dranishnikov theorems relating extension properties nilpotent complexes their homology groups here main results paper theorem nilpotent complex homotopy fiber inclusion its infinite symmetric product metrizable space tau l tau tau theorem metrizable space mathop dim infty anr suppose nilpotent complex tau tau following cases finitely generated torsion group

M. Cencelj 1 ; J. Dydak 2 ; A. Mitra 2 ; A. Vavpetič 3

1 IMFM Univerza v Ljubljani Jadranska ulica 19 SI-1111 Ljubljana, Slovenija
2 University of Tennessee Knoxville, TN 37996, U.S.A.
3 Fakulteta za Matematiko in Fiziko Univerza v Ljubljani Jadranska ulica 19 SI-1111 Ljubljana, Slovenija
@article{10_4064_fm198_2_2,
     author = {M. Cencelj and J. Dydak and A. Mitra and A. Vavpeti\v{c}},
     title = {Hurewicz{\textendash}Serre theorem in extension theory},
     journal = {Fundamenta Mathematicae},
     pages = {113--123},
     publisher = {mathdoc},
     volume = {198},
     number = {2},
     year = {2008},
     doi = {10.4064/fm198-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm198-2-2/}
}
TY  - JOUR
AU  - M. Cencelj
AU  - J. Dydak
AU  - A. Mitra
AU  - A. Vavpetič
TI  - Hurewicz–Serre theorem in extension theory
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 113
EP  - 123
VL  - 198
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm198-2-2/
DO  - 10.4064/fm198-2-2
LA  - en
ID  - 10_4064_fm198_2_2
ER  - 
%0 Journal Article
%A M. Cencelj
%A J. Dydak
%A A. Mitra
%A A. Vavpetič
%T Hurewicz–Serre theorem in extension theory
%J Fundamenta Mathematicae
%D 2008
%P 113-123
%V 198
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm198-2-2/
%R 10.4064/fm198-2-2
%G en
%F 10_4064_fm198_2_2
M. Cencelj; J. Dydak; A. Mitra; A. Vavpetič. Hurewicz–Serre theorem in extension theory. Fundamenta Mathematicae, Tome 198 (2008) no. 2, pp. 113-123. doi : 10.4064/fm198-2-2. http://geodesic.mathdoc.fr/articles/10.4064/fm198-2-2/

Cité par Sources :