Reflection implies the SCH
Fundamenta Mathematicae, Tome 198 (2008) no. 2, pp. 95-111
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that, e.g., if $\mu > \mathop{\rm cf}\nolimits(\mu) = \aleph_0$
and $\mu > 2^{\aleph_0}$ and every stationary family of countable
subsets of $\mu^+$ reflects in some subset of $\mu^+$ of cardinality
$\aleph_1$, then the SCH for $\mu^+$ holds
(moreover, for $\mu^+$, any scale for
$\mu^+$ has a bad stationary set of cofinality $\aleph_1$).
This answers a question of Foreman and Todorčević who
get such a conclusion from the simultaneous
reflection of four stationary sets.
Keywords:
prove mathop nolimits aleph aleph every stationary family countable subsets reflects subset cardinality aleph sch holds moreover scale has bad stationary set cofinality nbsp aleph answers question foreman todor evi who get conclusion simultaneous reflection stationary sets
Affiliations des auteurs :
Saharon Shelah 1
@article{10_4064_fm198_2_1,
author = {Saharon Shelah},
title = {Reflection implies the {SCH}},
journal = {Fundamenta Mathematicae},
pages = {95--111},
publisher = {mathdoc},
volume = {198},
number = {2},
year = {2008},
doi = {10.4064/fm198-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm198-2-1/}
}
Saharon Shelah. Reflection implies the SCH. Fundamenta Mathematicae, Tome 198 (2008) no. 2, pp. 95-111. doi: 10.4064/fm198-2-1
Cité par Sources :