An ordered structure of rank two related to Dulac's Problem
Fundamenta Mathematicae, Tome 198 (2008) no. 1, pp. 17-60.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a vector field $\xi$ on $\mathbb{R}^2$ we construct, under certain assumptions on $\xi$, an ordered model-theoretic structure associated to the flow of $\xi$. We do this in such a way that the set of all limit cycles of $\xi$ is represented by a definable set. This allows us to give two restatements of Dulac's Problem for $\xi$—that is, the question whether $\xi$ has finitely many limit cycles—in model-theoretic terms, one involving the recently developed notion of ${\rm U}^{\rm l}\!\!\!\!\rm^{^o}$-rank and the other involving the notion of o-minimality.
DOI : 10.4064/fm198-1-2
Keywords: vector field mathbb construct under certain assumptions ordered model theoretic structure associated flow set limit cycles nbsp represented definable set allows restatements dulacs problem question whether has finitely many limit cycles model theoretic terms involving recently developed notion rank other involving notion o minimality

A. Dolich 1 ; P. Speissegger 2

1 Department of Mathematics Chicago State University Chicago, IL 60628, U.S.A.
2 Department of Mathematics & Statistics McMaster University Hamilton, ON, Canada L8S 4K1
@article{10_4064_fm198_1_2,
     author = {A. Dolich and P. Speissegger},
     title = {An ordered structure of rank two
related to {Dulac's} {Problem}},
     journal = {Fundamenta Mathematicae},
     pages = {17--60},
     publisher = {mathdoc},
     volume = {198},
     number = {1},
     year = {2008},
     doi = {10.4064/fm198-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm198-1-2/}
}
TY  - JOUR
AU  - A. Dolich
AU  - P. Speissegger
TI  - An ordered structure of rank two
related to Dulac's Problem
JO  - Fundamenta Mathematicae
PY  - 2008
SP  - 17
EP  - 60
VL  - 198
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm198-1-2/
DO  - 10.4064/fm198-1-2
LA  - en
ID  - 10_4064_fm198_1_2
ER  - 
%0 Journal Article
%A A. Dolich
%A P. Speissegger
%T An ordered structure of rank two
related to Dulac's Problem
%J Fundamenta Mathematicae
%D 2008
%P 17-60
%V 198
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm198-1-2/
%R 10.4064/fm198-1-2
%G en
%F 10_4064_fm198_1_2
A. Dolich; P. Speissegger. An ordered structure of rank two
related to Dulac's Problem. Fundamenta Mathematicae, Tome 198 (2008) no. 1, pp. 17-60. doi : 10.4064/fm198-1-2. http://geodesic.mathdoc.fr/articles/10.4064/fm198-1-2/

Cité par Sources :