Injective comodules and
Landweber exact homology theories
Fundamenta Mathematicae, Tome 196 (2007) no. 3, pp. 237-251
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We classify the indecomposable injective $E(n)_{*}E(n)$-comodules, where
$E(n)$ is the Johnson–Wilson homology theory. They are suspensions of
the $J_{n,r}= E(n)_{*}(M_{r}E(r))$, where $0\leq r\leq n$, with the
endomorphism ring of $J_{n,r}$ being $\widehat{E(r)}^{*}\widehat{E(r)}$,
where $\widehat{E(r)}$ denotes the completion of~$E(r)$.
Keywords:
classify indecomposable injective * comodules where johnson wilson homology theory suspensions * where leq leq endomorphism ring being widehat * widehat where widehat denotes completion
Affiliations des auteurs :
Mark Hovey 1
@article{10_4064_fm196_3_2,
author = {Mark Hovey},
title = {Injective comodules and
{Landweber} exact homology theories},
journal = {Fundamenta Mathematicae},
pages = {237--251},
publisher = {mathdoc},
volume = {196},
number = {3},
year = {2007},
doi = {10.4064/fm196-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm196-3-2/}
}
Mark Hovey. Injective comodules and Landweber exact homology theories. Fundamenta Mathematicae, Tome 196 (2007) no. 3, pp. 237-251. doi: 10.4064/fm196-3-2
Cité par Sources :