The effective Borel hierarchy
Fundamenta Mathematicae, Tome 195 (2007) no. 3, pp. 269-289.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $K$ be a subclass of $\mathop{\rm Mod}(\mathcal{L})$ which is closed under isomorphism. Vaught showed that $K$ is ${\bf\Sigma}_\alpha$ (respectively, ${\bf\Pi}_\alpha$) in the Borel hierarchy iff $K$ is axiomatized by an infinitary $\Sigma_\alpha$ (respectively, $\Pi_\alpha$) sentence. We prove a generalization of Vaught's theorem for the effective Borel hierarchy, i.e. the Borel sets formed by union and complementation over c.e. sets. This result says that we can axiomatize an effective $\Sigma_\alpha$ or effective $\Pi_\alpha$ Borel set with a computable infinitary sentence of the same complexity. This result yields an alternative proof of Vaught's theorem via forcing. We also get a version of the pull-back theorem from Knight et al. which says if ${\mit\Phi}$ is a Turing computable embedding of $K \subseteq \mathop{\rm Mod}(\mathcal{L})$ into $K' \subseteq \mathop{\rm Mod}(\mathcal{L'})$, then for any computable infinitary sentence $\varphi$ in the language $\mathcal{L}$, we can find a computable infinitary sentence $\varphi^*$ in $\mathcal{L}'$ such that for all $\mathcal{A}\in K$, $\mathcal{A}\models\varphi^*$ iff ${\mit\Phi}(\mathcal{A})\models\varphi$, where $\varphi^*$ has the same complexity as~$\varphi$.
DOI : 10.4064/fm195-3-4
Keywords: subclass mathop mod mathcal which closed under isomorphism vaught showed sigma alpha respectively alpha borel hierarchy axiomatized infinitary sigma alpha respectively alpha sentence prove generalization vaughts theorem effective borel hierarchy borel sets formed union complementation sets result says axiomatize effective sigma alpha effective alpha borel set computable infinitary sentence complexity result yields alternative proof vaughts theorem via forcing get version pull back theorem knight which says mit phi turing computable embedding subseteq mathop mod mathcal subseteq mathop mod mathcal computable infinitary sentence varphi language mathcal computable infinitary sentence varphi * mathcal mathcal mathcal models varphi * mit phi mathcal models varphi where varphi * has complexity varphi

M. Vanden Boom 1

1 Department of Mathematics University of Notre Dame Notre Dame, IN 46556, U.S.A.
@article{10_4064_fm195_3_4,
     author = {M. Vanden Boom},
     title = {The effective {Borel} hierarchy},
     journal = {Fundamenta Mathematicae},
     pages = {269--289},
     publisher = {mathdoc},
     volume = {195},
     number = {3},
     year = {2007},
     doi = {10.4064/fm195-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm195-3-4/}
}
TY  - JOUR
AU  - M. Vanden Boom
TI  - The effective Borel hierarchy
JO  - Fundamenta Mathematicae
PY  - 2007
SP  - 269
EP  - 289
VL  - 195
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm195-3-4/
DO  - 10.4064/fm195-3-4
LA  - en
ID  - 10_4064_fm195_3_4
ER  - 
%0 Journal Article
%A M. Vanden Boom
%T The effective Borel hierarchy
%J Fundamenta Mathematicae
%D 2007
%P 269-289
%V 195
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm195-3-4/
%R 10.4064/fm195-3-4
%G en
%F 10_4064_fm195_3_4
M. Vanden Boom. The effective Borel hierarchy. Fundamenta Mathematicae, Tome 195 (2007) no. 3, pp. 269-289. doi : 10.4064/fm195-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm195-3-4/

Cité par Sources :