Relations approximated by continuous functions
in the Vietoris topology
Fundamenta Mathematicae, Tome 195 (2007) no. 3, pp. 205-219
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be a Tikhonov space, $C(X)$ be the space of all continuous real-valued functions defined on $X$, and ${\rm CL}(X \times {{\mathbb R}})$ be the hyperspace of all nonempty closed subsets of $X\times {{\mathbb R}}$. We prove the following result: Let $X$ be a locally connected locally compact paracompact space, and let $F \in {\rm CL}(X \times {{\mathbb R}})$. Then $F$ is in the closure of $C(X)$ in ${\rm CL}(X \times {{\mathbb R}})$ with the Vietoris topology if and only if: (1) for every $x \in X$, $F(x)$ is nonempty; (2) for every $x \in X$, $F(x)$ is connected; (3) for every isolated $x \in X$, $F(x)$ is a singleton set; (4) $F$ is upper semicontinuous; and (5) $F$ forces local semiboundedness. This gives an answer to Problem 5.5 in [HM] and to Question 5.5 in [Mc2] in the realm of locally connected locally compact paracompact spaces.
Keywords:
tikhonov space space continuous real valued functions defined times mathbb hyperspace nonempty closed subsets times mathbb prove following result locally connected locally compact paracompact space times mathbb closure times mathbb vietoris topology only every nonempty every connected every isolated singleton set upper semicontinuous forces local semiboundedness gives answer problem question realm locally connected locally compact paracompact spaces
Affiliations des auteurs :
L'. Holá 1 ; R. A. McCoy 2
@article{10_4064_fm195_3_2,
author = {L'. Hol\'a and R. A. McCoy},
title = {Relations approximated by continuous functions
in the {Vietoris} topology},
journal = {Fundamenta Mathematicae},
pages = {205--219},
publisher = {mathdoc},
volume = {195},
number = {3},
year = {2007},
doi = {10.4064/fm195-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm195-3-2/}
}
TY - JOUR AU - L'. Holá AU - R. A. McCoy TI - Relations approximated by continuous functions in the Vietoris topology JO - Fundamenta Mathematicae PY - 2007 SP - 205 EP - 219 VL - 195 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm195-3-2/ DO - 10.4064/fm195-3-2 LA - en ID - 10_4064_fm195_3_2 ER -
L'. Holá; R. A. McCoy. Relations approximated by continuous functions in the Vietoris topology. Fundamenta Mathematicae, Tome 195 (2007) no. 3, pp. 205-219. doi: 10.4064/fm195-3-2
Cité par Sources :