Complete pairs of coanalytic sets
Fundamenta Mathematicae, Tome 194 (2007) no. 3, pp. 267-281
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let
$X$ be a Polish space, and let
$C_0$ and $C_1$ be disjoint coanalytic subsets of $X$. The pair $(C_0, C_1)$ is said to be
complete if for every pair $(D_0,D_1)$ of disjoint coanalytic subsets of
$\omega^\omega$ there exists a continuous function $f:\omega^\omega \to X$ such that $f^{-1}( C_0) = D_0$ and $ f^{-1}( C_1) = D_1$. We give several explicit examples of complete pairs of coanalytic sets.
Keywords:
polish space disjoint coanalytic subsets nbsp pair said complete every pair disjoint coanalytic subsets omega omega there exists continuous function omega omega several explicit examples complete pairs coanalytic sets
Affiliations des auteurs :
Jean Saint Raymond 1
@article{10_4064_fm194_3_4,
author = {Jean Saint Raymond},
title = {Complete pairs of coanalytic sets},
journal = {Fundamenta Mathematicae},
pages = {267--281},
publisher = {mathdoc},
volume = {194},
number = {3},
year = {2007},
doi = {10.4064/fm194-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm194-3-4/}
}
Jean Saint Raymond. Complete pairs of coanalytic sets. Fundamenta Mathematicae, Tome 194 (2007) no. 3, pp. 267-281. doi: 10.4064/fm194-3-4
Cité par Sources :