Complete pairs of coanalytic sets
Fundamenta Mathematicae, Tome 194 (2007) no. 3, pp. 267-281.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a Polish space, and let $C_0$ and $C_1$ be disjoint coanalytic subsets of $X$. The pair $(C_0, C_1)$ is said to be complete if for every pair $(D_0,D_1)$ of disjoint coanalytic subsets of $\omega^\omega$ there exists a continuous function $f:\omega^\omega \to X$ such that $f^{-1}( C_0) = D_0$ and $ f^{-1}( C_1) = D_1$. We give several explicit examples of complete pairs of coanalytic sets.
DOI : 10.4064/fm194-3-4
Keywords: polish space disjoint coanalytic subsets nbsp pair said complete every pair disjoint coanalytic subsets omega omega there exists continuous function omega omega several explicit examples complete pairs coanalytic sets

Jean Saint Raymond 1

1 Analyse Fonctionnelle Institut de Mathématique de Jussieu Boîte 186 4, place Jussieu 75252 Paris Cedex 05, France
@article{10_4064_fm194_3_4,
     author = {Jean Saint Raymond},
     title = {Complete pairs of coanalytic sets},
     journal = {Fundamenta Mathematicae},
     pages = {267--281},
     publisher = {mathdoc},
     volume = {194},
     number = {3},
     year = {2007},
     doi = {10.4064/fm194-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm194-3-4/}
}
TY  - JOUR
AU  - Jean Saint Raymond
TI  - Complete pairs of coanalytic sets
JO  - Fundamenta Mathematicae
PY  - 2007
SP  - 267
EP  - 281
VL  - 194
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm194-3-4/
DO  - 10.4064/fm194-3-4
LA  - en
ID  - 10_4064_fm194_3_4
ER  - 
%0 Journal Article
%A Jean Saint Raymond
%T Complete pairs of coanalytic sets
%J Fundamenta Mathematicae
%D 2007
%P 267-281
%V 194
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm194-3-4/
%R 10.4064/fm194-3-4
%G en
%F 10_4064_fm194_3_4
Jean Saint Raymond. Complete pairs of coanalytic sets. Fundamenta Mathematicae, Tome 194 (2007) no. 3, pp. 267-281. doi : 10.4064/fm194-3-4. http://geodesic.mathdoc.fr/articles/10.4064/fm194-3-4/

Cité par Sources :