An extension of Zassenhaus' theorem on endomorphism rings
Fundamenta Mathematicae, Tome 194 (2007) no. 3, pp. 239-251
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $R$ be a ring with identity such that $R^{+}$, the additive group of $R$,
is torsion-free. If there is some $R$-module $M$ such that $R\subseteq
M\subseteq\mathbb{Q}R\ (=\mathbb{Q}\otimes_{\mathbb{Z}}R)$ and ${\rm End}_{\mathbb{Z}
}(M)=R$, we call $R$ a Zassenhaus ring. Hans Zassenhaus showed in 1967 that
whenever $R^{+}$ is free of finite rank, then $R$ is a Zassenhaus ring. We
will show that if $R^{+}$ is free of countable rank and each element
of $R$ is algebraic over $\mathbb{Q}$, then $R$ is a Zassenhaus ring. We will
give an example showing that this restriction on $R$ is needed. Moreover, we
will show that a ring due to A. L. S. Corner, answering Kaplansky's test
problems in the negative for torsion-free abelian groups, is a Zassenhaus ring.
Mots-clés :
ring identity additive group torsion free there r module subseteq subseteq mathbb mathbb otimes mathbb end mathbb call zassenhaus ring hans zassenhaus showed whenever finite rank zassenhaus ring countable rank each element algebraic mathbb zassenhaus ring example showing restriction needed moreover ring due corner answering kaplanskys test problems negative torsion free abelian groups zassenhaus ring
Affiliations des auteurs :
Manfred Dugas 1 ; Rüdiger Göbel 2
@article{10_4064_fm194_3_2,
author = {Manfred Dugas and R\"udiger G\"obel},
title = {An extension of {Zassenhaus'} theorem on endomorphism rings},
journal = {Fundamenta Mathematicae},
pages = {239--251},
publisher = {mathdoc},
volume = {194},
number = {3},
year = {2007},
doi = {10.4064/fm194-3-2},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm194-3-2/}
}
TY - JOUR AU - Manfred Dugas AU - Rüdiger Göbel TI - An extension of Zassenhaus' theorem on endomorphism rings JO - Fundamenta Mathematicae PY - 2007 SP - 239 EP - 251 VL - 194 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm194-3-2/ DO - 10.4064/fm194-3-2 LA - de ID - 10_4064_fm194_3_2 ER -
Manfred Dugas; Rüdiger Göbel. An extension of Zassenhaus' theorem on endomorphism rings. Fundamenta Mathematicae, Tome 194 (2007) no. 3, pp. 239-251. doi: 10.4064/fm194-3-2
Cité par Sources :