An extension of Zassenhaus' theorem on endomorphism rings
Fundamenta Mathematicae, Tome 194 (2007) no. 3, pp. 239-251.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $R$ be a ring with identity such that $R^{+}$, the additive group of $R$, is torsion-free. If there is some $R$-module $M$ such that $R\subseteq M\subseteq\mathbb{Q}R\ (=\mathbb{Q}\otimes_{\mathbb{Z}}R)$ and ${\rm End}_{\mathbb{Z} }(M)=R$, we call $R$ a Zassenhaus ring. Hans Zassenhaus showed in 1967 that whenever $R^{+}$ is free of finite rank, then $R$ is a Zassenhaus ring. We will show that if $R^{+}$ is free of countable rank and each element of $R$ is algebraic over $\mathbb{Q}$, then $R$ is a Zassenhaus ring. We will give an example showing that this restriction on $R$ is needed. Moreover, we will show that a ring due to A. L. S. Corner, answering Kaplansky's test problems in the negative for torsion-free abelian groups, is a Zassenhaus ring.
DOI : 10.4064/fm194-3-2
Mots-clés : ring identity additive group torsion free there r module subseteq subseteq mathbb mathbb otimes mathbb end mathbb call zassenhaus ring hans zassenhaus showed whenever finite rank zassenhaus ring countable rank each element algebraic mathbb zassenhaus ring example showing restriction needed moreover ring due corner answering kaplanskys test problems negative torsion free abelian groups zassenhaus ring

Manfred Dugas 1 ; Rüdiger Göbel 2

1 Department of Mathematics Baylor University Waco, TX 76798, U.S.A.
2 Fachbereich Mathematik Universität Duisburg-Essen 45117 Essen, Germany
@article{10_4064_fm194_3_2,
     author = {Manfred Dugas and R\"udiger G\"obel},
     title = {An extension of {Zassenhaus'} theorem on endomorphism rings},
     journal = {Fundamenta Mathematicae},
     pages = {239--251},
     publisher = {mathdoc},
     volume = {194},
     number = {3},
     year = {2007},
     doi = {10.4064/fm194-3-2},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm194-3-2/}
}
TY  - JOUR
AU  - Manfred Dugas
AU  - Rüdiger Göbel
TI  - An extension of Zassenhaus' theorem on endomorphism rings
JO  - Fundamenta Mathematicae
PY  - 2007
SP  - 239
EP  - 251
VL  - 194
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm194-3-2/
DO  - 10.4064/fm194-3-2
LA  - de
ID  - 10_4064_fm194_3_2
ER  - 
%0 Journal Article
%A Manfred Dugas
%A Rüdiger Göbel
%T An extension of Zassenhaus' theorem on endomorphism rings
%J Fundamenta Mathematicae
%D 2007
%P 239-251
%V 194
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm194-3-2/
%R 10.4064/fm194-3-2
%G de
%F 10_4064_fm194_3_2
Manfred Dugas; Rüdiger Göbel. An extension of Zassenhaus' theorem on endomorphism rings. Fundamenta Mathematicae, Tome 194 (2007) no. 3, pp. 239-251. doi : 10.4064/fm194-3-2. http://geodesic.mathdoc.fr/articles/10.4064/fm194-3-2/

Cité par Sources :