Finite-to-one continuous $s$-covering mappings
Fundamenta Mathematicae, Tome 194 (2007) no. 1, pp. 89-93.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The following theorem is proved. Let $f: X \to Y$ be a finite-to-one map such that the restriction $f|f^{-1}(S)$ is an inductively perfect map for every countable compact set $S \subset Y$. Then $Y$ is a countable union of closed subsets $Y_i$ such that every restriction $f|f^{-1}(Y_i)$ is an inductively perfect map.
DOI : 10.4064/fm194-1-5
Keywords: following theorem proved finite to one map restriction inductively perfect map every countable compact set subset countable union closed subsets every restriction inductively perfect map

Alexey Ostrovsky 1

1 Bundeswehr University Munich D-85577 Neubiberg, Germany
@article{10_4064_fm194_1_5,
     author = {Alexey Ostrovsky},
     title = {Finite-to-one continuous $s$-covering mappings},
     journal = {Fundamenta Mathematicae},
     pages = {89--93},
     publisher = {mathdoc},
     volume = {194},
     number = {1},
     year = {2007},
     doi = {10.4064/fm194-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm194-1-5/}
}
TY  - JOUR
AU  - Alexey Ostrovsky
TI  - Finite-to-one continuous $s$-covering mappings
JO  - Fundamenta Mathematicae
PY  - 2007
SP  - 89
EP  - 93
VL  - 194
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm194-1-5/
DO  - 10.4064/fm194-1-5
LA  - en
ID  - 10_4064_fm194_1_5
ER  - 
%0 Journal Article
%A Alexey Ostrovsky
%T Finite-to-one continuous $s$-covering mappings
%J Fundamenta Mathematicae
%D 2007
%P 89-93
%V 194
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm194-1-5/
%R 10.4064/fm194-1-5
%G en
%F 10_4064_fm194_1_5
Alexey Ostrovsky. Finite-to-one continuous $s$-covering mappings. Fundamenta Mathematicae, Tome 194 (2007) no. 1, pp. 89-93. doi : 10.4064/fm194-1-5. http://geodesic.mathdoc.fr/articles/10.4064/fm194-1-5/

Cité par Sources :