MAD families with strong combinatorial properties
Fundamenta Mathematicae, Tome 193 (2007) no. 1, pp. 7-21.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In his paper in Fund. Math. 178 (2003), Miller presented two conjectures regarding MAD families. The first is that CH implies the existence of a MAD family that is also a $\sigma $-set. The second is that under CH, there is a MAD family concentrated on a countable subset. These are proved in the present paper.
DOI : 10.4064/fm193-1-2
Keywords: his paper fund math miller presented conjectures regarding mad families first implies existence mad family sigma set second under there mad family concentrated countable subset these proved present paper

Jörg Brendle 1 ; Greg Piper 1

1 The Graduate School of Science and Technology Kobe University Rokko-dai 1-1, Nada-ku Kobe 657-8501, Japan
@article{10_4064_fm193_1_2,
     author = {J\"org Brendle and Greg Piper},
     title = {MAD families with strong combinatorial properties},
     journal = {Fundamenta Mathematicae},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {193},
     number = {1},
     year = {2007},
     doi = {10.4064/fm193-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm193-1-2/}
}
TY  - JOUR
AU  - Jörg Brendle
AU  - Greg Piper
TI  - MAD families with strong combinatorial properties
JO  - Fundamenta Mathematicae
PY  - 2007
SP  - 7
EP  - 21
VL  - 193
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm193-1-2/
DO  - 10.4064/fm193-1-2
LA  - en
ID  - 10_4064_fm193_1_2
ER  - 
%0 Journal Article
%A Jörg Brendle
%A Greg Piper
%T MAD families with strong combinatorial properties
%J Fundamenta Mathematicae
%D 2007
%P 7-21
%V 193
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm193-1-2/
%R 10.4064/fm193-1-2
%G en
%F 10_4064_fm193_1_2
Jörg Brendle; Greg Piper. MAD families with strong combinatorial properties. Fundamenta Mathematicae, Tome 193 (2007) no. 1, pp. 7-21. doi : 10.4064/fm193-1-2. http://geodesic.mathdoc.fr/articles/10.4064/fm193-1-2/

Cité par Sources :