On the cardinality of power homogeneous Hausdorff spaces
Fundamenta Mathematicae, Tome 192 (2006) no. 3, pp. 255-266.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that the cardinality of power homogeneous Hausdorff spaces $X$ is bounded by $d(X)^{\pi \chi (X)}$. This inequality improves many known results and it also solves a question by J. van Mill. We further introduce $\Delta $-power homogeneity, which leads to a new proof of van Douwen's theorem.
DOI : 10.4064/fm192-3-5
Keywords: prove cardinality power homogeneous hausdorff spaces bounded chi inequality improves many known results solves question van mill further introduce delta power homogeneity which leads proof van douwens theorem

G. J. Ridderbos 1

1 Faculty of Sciences, Division of Mathematics Vrije Universiteit De Boelelaan 1081A 1081 HV Amsterdam, The Netherlands
@article{10_4064_fm192_3_5,
     author = {G. J. Ridderbos},
     title = {On the cardinality of power homogeneous {Hausdorff} spaces},
     journal = {Fundamenta Mathematicae},
     pages = {255--266},
     publisher = {mathdoc},
     volume = {192},
     number = {3},
     year = {2006},
     doi = {10.4064/fm192-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm192-3-5/}
}
TY  - JOUR
AU  - G. J. Ridderbos
TI  - On the cardinality of power homogeneous Hausdorff spaces
JO  - Fundamenta Mathematicae
PY  - 2006
SP  - 255
EP  - 266
VL  - 192
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm192-3-5/
DO  - 10.4064/fm192-3-5
LA  - en
ID  - 10_4064_fm192_3_5
ER  - 
%0 Journal Article
%A G. J. Ridderbos
%T On the cardinality of power homogeneous Hausdorff spaces
%J Fundamenta Mathematicae
%D 2006
%P 255-266
%V 192
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm192-3-5/
%R 10.4064/fm192-3-5
%G en
%F 10_4064_fm192_3_5
G. J. Ridderbos. On the cardinality of power homogeneous Hausdorff spaces. Fundamenta Mathematicae, Tome 192 (2006) no. 3, pp. 255-266. doi : 10.4064/fm192-3-5. http://geodesic.mathdoc.fr/articles/10.4064/fm192-3-5/

Cité par Sources :