Automorphisms of models of bounded arithmetic
Fundamenta Mathematicae, Tome 192 (2006) no. 1, pp. 37-65.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish the following model-theoretic characterization of the fragment $I\Delta_{0}+\mathop{\rm Exp}+B\Sigma_{1}$ of Peano arithmetic in terms of fixed points of automorphisms of models of bounded arithmetic (the fragment $I\Delta_{0}$ of Peano arithmetic with induction limited to $\Delta_{0}$-formulae).Theorem A. The following two conditions are equivalent for a countable model $\mathfrak{M}$ of the language of arithmetic: (a) $\mathfrak{M}$ satisfies $I\Delta_{0}+B\Sigma _{1}+\mathop{\rm Exp}$;(b) $\mathfrak{M}=I_{{\rm fix}}(j)$ for some nontrivial automorphism $j$ of an end extension $\mathfrak{N}$ of $\mathfrak{M}$ that satisfies $I\Delta_{0}.$ Here $I_{{\rm fix}}(j)$ is the largest initial segment of the domain of $j$ that is pointwise fixed by $j$, $\mathop{\rm Exp}$ is the axiom asserting the totality of the exponential function, and $B\Sigma_{1}$ is the $\Sigma_{1}$-collection scheme consisting of the universal closure of formulae of the form $$ [\forall x a\ \exists y\ \varphi (x,y)]\rightarrow [\exists z\ \forall x a\ \exists y z\ \varphi (x,y)], $$ where $\varphi $ is a $\Delta_{0}$-formula. Theorem A was inspired by a theorem of Smoryński, but the method of proof of Theorem A is quite different and yields the following strengthening of Smoryński's result: Theorem B. Suppose $\mathfrak{M}$ is a countable recursively saturated model of\/ {\rm PA} and $I$ is a proper initial segment of $\mathfrak{M}$ that is closed under exponentiation. There is a group embedding $j\mapsto \widehat{j}$ from $\mathop{\rm Aut}\nolimits(\mathbb{Q})$ into $\mathop{\rm Aut}\nolimits(\mathfrak{M})$ such that $I=I_{{\rm fix}}(\widehat{j})$ for every nontrivial $j\in \mathop{\rm Aut}\nolimits(\mathbb{Q}).$ Moreover, if $j$ is fixed point free, then the fixed point set of $\widehat{j}$ is isomorphic to $\mathfrak{M}$. Here $\mathop{\rm Aut}\nolimits(X)$ is the group of automorphisms of the structure $X$, and $\mathbb{Q}$ is the ordered set of rationals.
DOI : 10.4064/fm192-1-3
Keywords: establish following model theoretic characterization fragment delta mathop exp sigma peano arithmetic terms fixed points automorphisms models bounded arithmetic fragment delta peano arithmetic induction limited delta formulae theorem following conditions equivalent countable model mathfrak language arithmetic mathfrak satisfies delta sigma mathop exp mathfrak fix nontrivial automorphism end extension mathfrak mathfrak satisfies delta here fix largest initial segment domain pointwise fixed mathop exp axiom asserting totality exponential function sigma sigma collection scheme consisting universal closure formulae form forall exists varphi rightarrow exists forall exists varphi where varphi delta formula theorem inspired theorem smory ski method proof theorem quite different yields following strengthening smory skis result theorem suppose mathfrak countable recursively saturated model proper initial segment mathfrak closed under exponentiation there group embedding mapsto widehat mathop aut nolimits mathbb mathop aut nolimits mathfrak fix widehat every nontrivial mathop aut nolimits mathbb moreover fixed point fixed point set widehat isomorphic mathfrak here mathop aut nolimits group automorphisms structure mathbb ordered set rationals

Ali Enayat 1

1 Department of Mathematics and Statistics American University 4400 Mass. Ave. N.W. Washington, DC 20016-8050, U.S.A.
@article{10_4064_fm192_1_3,
     author = {Ali Enayat},
     title = {Automorphisms of models of bounded arithmetic},
     journal = {Fundamenta Mathematicae},
     pages = {37--65},
     publisher = {mathdoc},
     volume = {192},
     number = {1},
     year = {2006},
     doi = {10.4064/fm192-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm192-1-3/}
}
TY  - JOUR
AU  - Ali Enayat
TI  - Automorphisms of models of bounded arithmetic
JO  - Fundamenta Mathematicae
PY  - 2006
SP  - 37
EP  - 65
VL  - 192
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm192-1-3/
DO  - 10.4064/fm192-1-3
LA  - en
ID  - 10_4064_fm192_1_3
ER  - 
%0 Journal Article
%A Ali Enayat
%T Automorphisms of models of bounded arithmetic
%J Fundamenta Mathematicae
%D 2006
%P 37-65
%V 192
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm192-1-3/
%R 10.4064/fm192-1-3
%G en
%F 10_4064_fm192_1_3
Ali Enayat. Automorphisms of models of bounded arithmetic. Fundamenta Mathematicae, Tome 192 (2006) no. 1, pp. 37-65. doi : 10.4064/fm192-1-3. http://geodesic.mathdoc.fr/articles/10.4064/fm192-1-3/

Cité par Sources :